diff --git a/docs/10.k-means聚类.md b/docs/10.k-means聚类.md index 3a94b324..9ae657a2 100644 --- a/docs/10.k-means聚类.md +++ b/docs/10.k-means聚类.md @@ -1,6 +1,8 @@ # 第 10 章 K-Means(K-均值)聚类算法 +![K-Means(K-均值)聚类算法_首页](/images/10.KMeans/K-Means_首页.jpg) + ## K-Means 算法 聚类是一种无监督的学习, 它将相似的对象归到一个簇中, 将不相似对象归到不同簇中. 相似这一概念取决于所选择的相似度计算方法. @@ -195,4 +197,8 @@ def biKMeans(dataSet, k, distMeas=distEclud): 上述函数可以运行多次,聚类会收敛到全局最小值,而原始的 kMeans() 函数偶尔会陷入局部最小值。 运行参考结果如下: -![二分 K-Means 运行结果1](../images/10.KMeans/apachecn-bikmeans-run-result-1.jpg) \ No newline at end of file +![二分 K-Means 运行结果1](../images/10.KMeans/apachecn-bikmeans-run-result-1.jpg) + +* **作者:[那伊抹微笑](http://www.apache.wiki/display/~xuxin)** +* [GitHub地址](https://github.com/apachecn/MachineLearning): +* **版权声明:欢迎转载学习 => 请标注信息来源于 [ApacheCN](http://www.apachecn.org/)** \ No newline at end of file diff --git a/images/10.KMeans/K-Means_首页.jpg b/images/10.KMeans/K-Means_首页.jpg new file mode 100644 index 00000000..f885bc83 Binary files /dev/null and b/images/10.KMeans/K-Means_首页.jpg differ