mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-10 22:05:11 +08:00
更新CART回归树的Sklearn 和 利用AdaBoost元算法提高分类的md
This commit is contained in:
@@ -1,50 +1,105 @@
|
||||
#!/usr/bin/python
|
||||
# coding:utf8
|
||||
|
||||
# '''
|
||||
# Created on 2017-03-10
|
||||
# Update on 2017-03-10
|
||||
# author: jiangzhonglian
|
||||
# content: 回归树
|
||||
# '''
|
||||
|
||||
# print(__doc__)
|
||||
|
||||
|
||||
# # Import the necessary modules and libraries
|
||||
# import numpy as np
|
||||
# from sklearn.tree import DecisionTreeRegressor
|
||||
# import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
# # Create a random dataset
|
||||
# rng = np.random.RandomState(1)
|
||||
# X = np.sort(5 * rng.rand(80, 1), axis=0)
|
||||
# y = np.sin(X).ravel()
|
||||
# print X, '\n\n\n-----------\n\n\n', y
|
||||
# y[::5] += 3 * (0.5 - rng.rand(16))
|
||||
|
||||
|
||||
# # Fit regression model
|
||||
# regr_1 = DecisionTreeRegressor(max_depth=2, min_samples_leaf=5)
|
||||
# regr_2 = DecisionTreeRegressor(max_depth=5, min_samples_leaf=5)
|
||||
# regr_1.fit(X, y)
|
||||
# regr_2.fit(X, y)
|
||||
|
||||
|
||||
# # Predict
|
||||
# X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
|
||||
# y_1 = regr_1.predict(X_test)
|
||||
# y_2 = regr_2.predict(X_test)
|
||||
|
||||
|
||||
# # Plot the results
|
||||
# plt.figure()
|
||||
# plt.scatter(X, y, c="darkorange", label="data")
|
||||
# plt.plot(X_test, y_1, color="cornflowerblue", label="max_depth=2", linewidth=2)
|
||||
# plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=5", linewidth=2)
|
||||
# plt.xlabel("data")
|
||||
# plt.ylabel("target")
|
||||
# plt.title("Decision Tree Regression")
|
||||
# plt.legend()
|
||||
# plt.show()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
'''
|
||||
Created on 2017-03-10
|
||||
Update on 2017-03-10
|
||||
author: jiangzhonglian
|
||||
content: 回归树
|
||||
content: 模型树
|
||||
'''
|
||||
|
||||
print(__doc__)
|
||||
|
||||
# Author: Noel Dawe <noel.dawe@gmail.com>
|
||||
#
|
||||
# License: BSD 3 clause
|
||||
|
||||
# Import the necessary modules and libraries
|
||||
# importing necessary libraries
|
||||
import numpy as np
|
||||
from sklearn.tree import DecisionTreeRegressor
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.tree import DecisionTreeRegressor
|
||||
from sklearn.ensemble import AdaBoostRegressor
|
||||
|
||||
|
||||
# Create a random dataset
|
||||
# Create the dataset
|
||||
rng = np.random.RandomState(1)
|
||||
X = np.sort(5 * rng.rand(80, 1), axis=0)
|
||||
y = np.sin(X).ravel()
|
||||
print X, '\n\n\n-----------\n\n\n', y
|
||||
y[::5] += 3 * (0.5 - rng.rand(16))
|
||||
|
||||
X = np.linspace(0, 6, 100)[:, np.newaxis]
|
||||
y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0])
|
||||
|
||||
# Fit regression model
|
||||
regr_1 = DecisionTreeRegressor(max_depth=2, min_samples_leaf=5)
|
||||
regr_2 = DecisionTreeRegressor(max_depth=5, min_samples_leaf=5)
|
||||
regr_1 = DecisionTreeRegressor(max_depth=4)
|
||||
|
||||
regr_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4),
|
||||
n_estimators=300, random_state=rng)
|
||||
|
||||
regr_1.fit(X, y)
|
||||
regr_2.fit(X, y)
|
||||
|
||||
|
||||
# Predict
|
||||
X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
|
||||
y_1 = regr_1.predict(X_test)
|
||||
y_2 = regr_2.predict(X_test)
|
||||
|
||||
y_1 = regr_1.predict(X)
|
||||
y_2 = regr_2.predict(X)
|
||||
|
||||
# Plot the results
|
||||
plt.figure()
|
||||
plt.scatter(X, y, c="darkorange", label="data")
|
||||
plt.plot(X_test, y_1, color="cornflowerblue", label="max_depth=2", linewidth=2)
|
||||
plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=5", linewidth=2)
|
||||
plt.scatter(X, y, c="k", label="training samples")
|
||||
plt.plot(X, y_1, c="g", label="n_estimators=1", linewidth=2)
|
||||
plt.plot(X, y_2, c="r", label="n_estimators=300", linewidth=2)
|
||||
plt.xlabel("data")
|
||||
plt.ylabel("target")
|
||||
plt.title("Decision Tree Regression")
|
||||
plt.title("Boosted Decision Tree Regression")
|
||||
plt.legend()
|
||||
plt.show()
|
||||
|
||||
Reference in New Issue
Block a user