补充注释

This commit is contained in:
那伊抹微笑
2017-04-08 13:10:03 +08:00
committed by GitHub
parent e22488a4f0
commit 3b850216ec

View File

@@ -4,12 +4,12 @@
from numpy import *
# 从文本中构建矩阵,加载文本文件,然后处理
def loadDataSet(fileName): # 通用函数,用来解析以 tab 键分隔的 floats浮点数
dataMat = [] # assume last column is target value
def loadDataSet(fileName): # 通用函数,用来解析以 tab 键分隔的 floats浮点数
dataMat = [] # 假设最后一列是目标变量
fr = open(fileName)
for line in fr.readlines():
curLine = line.strip().split('\t')
fltLine = map(float,curLine) # 映射所有的元素为 float浮点数类型
fltLine = map(float,curLine) # 映射所有的元素为 float浮点数类型
dataMat.append(fltLine)
return dataMat
@@ -19,32 +19,35 @@ def distEclud(vecA, vecB):
# 为给定数据集构建一个包含 k 个随机质心的集合。随机质心必须要在整个数据集的边界之内,这可以通过找到数据集每一维的最小和最大值来完成。然后生成 0~1.0 之间的随机数并通过取值范围和最小值,以便确保随机点在数据的边界之内。
def randCent(dataSet, k):
n = shape(dataSet)[1] # 列
centroids = mat(zeros((k,n))) # 创建质心矩阵
for j in range(n): # 穿件随机簇质心,并且在每一维的边界内
minJ = min(dataSet[:,j])
rangeJ = float(max(dataSet[:,j]) - minJ)
centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1)) # 随机生成
n = shape(dataSet)[1] # 列的数俩
centroids = mat(zeros((k,n))) # 创建k个质心矩阵
for j in range(n): # 创建随机簇质心,并且在每一维的边界内
minJ = min(dataSet[:,j]) # 最小值
rangeJ = float(max(dataSet[:,j]) - minJ) # 范围 = 最大值 - 最小值
centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1)) # 随机生成
return centroids
# k-means 聚类算法
# 该算法会创建k个质心然后将每个点分配到最近的质心再重新计算质心。
# 这个过程重复数次,知道数据点的簇分配结果不再改变位置。
# 运行结果(多次运行结果可能会不一样,可以试试,原因为随机质心的影响,但总的结果是对的, 因为数据足够相似,也可能会陷入局部最小值)
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2))) # 创建矩阵来分配数据点到质心中
centroids = createCent(dataSet, k)
m = shape(dataSet)[0] # 行数
clusterAssment = mat(zeros((m,2))) # 创建一个与 dataSet 行数一样,但是有两列的矩阵,用来保存簇分配结果。
centroids = createCent(dataSet, k) # 创建质心随机k个质心
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m): # 循环每一个数据点并分配到最近的质心中去
for i in range(m): # 循环每一个数据点并分配到最近的质心中去
minDist = inf; minIndex = -1
for j in range(k):
distJI = distMeas(centroids[j,:],dataSet[i,:])
if distJI < minDist:
distJI = distMeas(centroids[j,:],dataSet[i,:]) # 计算距离
if distJI < minDist: # 如果距离比 minDist最小距离还小更新 minDist最小距离和最小质心的 index索引
minDist = distJI; minIndex = j
if clusterAssment[i,0] != minIndex: clusterChanged = True
clusterAssment[i,:] = minIndex,minDist**2
clusterAssment[i,:] = minIndex,minDist**2 # 更新簇分配结果为最小质心的 index索引minDist最小距离的平方
print centroids
for cent in range(k): # 重新计算质心
for cent in range(k): # 更新质心
ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]] # 获取该簇中的所有点
centroids[cent,:] = mean(ptsInClust, axis=0) # 分配质心
centroids[cent,:] = mean(ptsInClust, axis=0) # 将质心修改为簇中所有点的平均值mean 就是求平均值的
return centroids, clusterAssment