mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-11 14:26:04 +08:00
更新文件路径
This commit is contained in:
@@ -290,8 +290,8 @@ if __name__ == "__main__":
|
||||
# print mat0, '\n-----------\n', mat1
|
||||
|
||||
# # 回归树
|
||||
# myDat = loadDataSet('input/09.RegTrees/data1.txt')
|
||||
# # myDat = loadDataSet('input/09.RegTrees/data2.txt')
|
||||
# myDat = loadDataSet('input/9.RegTrees/data1.txt')
|
||||
# # myDat = loadDataSet('input/9.RegTrees/data2.txt')
|
||||
# # print 'myDat=', myDat
|
||||
# myMat = mat(myDat)
|
||||
# # print 'myMat=', myMat
|
||||
@@ -299,13 +299,13 @@ if __name__ == "__main__":
|
||||
# print myTree
|
||||
|
||||
# # 1. 预剪枝就是:提起设置最大误差数和最少元素数
|
||||
# myDat = loadDataSet('input/09.RegTrees/data3.txt')
|
||||
# myDat = loadDataSet('input/9.RegTrees/data3.txt')
|
||||
# myMat = mat(myDat)
|
||||
# myTree = createTree(myMat, ops=(0, 1))
|
||||
# print myTree
|
||||
|
||||
# # 2. 后剪枝就是:通过测试数据,对预测模型进行合并判断
|
||||
# myDatTest = loadDataSet('input/09.RegTrees/data3test.txt')
|
||||
# myDatTest = loadDataSet('input/9.RegTrees/data3test.txt')
|
||||
# myMat2Test = mat(myDatTest)
|
||||
# myFinalTree = prune(myTree, myMat2Test)
|
||||
# print '\n\n\n-------------------'
|
||||
@@ -313,14 +313,14 @@ if __name__ == "__main__":
|
||||
|
||||
# # --------
|
||||
# # 模型树求解
|
||||
# myDat = loadDataSet('input/09.RegTrees/data4.txt')
|
||||
# myDat = loadDataSet('input/9.RegTrees/data4.txt')
|
||||
# myMat = mat(myDat)
|
||||
# myTree = createTree(myMat, modelLeaf, modelErr)
|
||||
# print myTree
|
||||
|
||||
# 回归树 VS 模型树 VS 线性回归
|
||||
trainMat = mat(loadDataSet('input/09.RegTrees/bikeSpeedVsIq_train.txt'))
|
||||
testMat = mat(loadDataSet('input/09.RegTrees/bikeSpeedVsIq_test.txt'))
|
||||
trainMat = mat(loadDataSet('input/9.RegTrees/bikeSpeedVsIq_train.txt'))
|
||||
testMat = mat(loadDataSet('input/9.RegTrees/bikeSpeedVsIq_test.txt'))
|
||||
# 回归树
|
||||
myTree1 = createTree(trainMat, ops=(1, 20))
|
||||
print myTree1
|
||||
|
||||
Reference in New Issue
Block a user