mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-14 15:55:35 +08:00
格式化SVM
This commit is contained in:
@@ -11,6 +11,39 @@ from numpy import *
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
class optStruct:
|
||||
"""
|
||||
建立的数据结构来保存所有的重要值
|
||||
"""
|
||||
def __init__(self, dataMatIn, classLabels, C, toler, kTup):
|
||||
"""
|
||||
Args:
|
||||
dataMatIn 数据集
|
||||
classLabels 类别标签
|
||||
C 松弛变量(常量值),允许有些数据点可以处于分隔面的错误一侧。
|
||||
控制最大化间隔和保证大部分的函数间隔小于1.0这两个目标的权重。
|
||||
可以通过调节该参数达到不同的结果。
|
||||
toler 容错率
|
||||
kTup 包含核函数信息的元组
|
||||
"""
|
||||
|
||||
self.X = dataMatIn
|
||||
self.labelMat = classLabels
|
||||
self.C = C
|
||||
self.tol = toler
|
||||
|
||||
# 数据的行数
|
||||
self.m = shape(dataMatIn)[0]
|
||||
self.alphas = mat(zeros((self.m, 1)))
|
||||
self.b = 0
|
||||
|
||||
# 误差缓存,第一列给出的是eCache是否有效的标志位,第二列给出的是实际的E值。
|
||||
self.eCache = mat(zeros((self.m, 2)))
|
||||
self.K = mat(zeros((self.m, self.m)))
|
||||
for i in range(self.m):
|
||||
self.K[:, i] = kernelTrans(self.X, self.X[i, :], kTup)
|
||||
|
||||
|
||||
def loadDataSet(fileName):
|
||||
"""
|
||||
对文件进行逐行解析,从而得到第行的类标签和整个数据矩阵
|
||||
@@ -30,138 +63,45 @@ def loadDataSet(fileName):
|
||||
return dataMat, labelMat
|
||||
|
||||
|
||||
def selectJrand(i, m):
|
||||
def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup=('lin', 0)):
|
||||
"""
|
||||
随机选择一个整数
|
||||
Args:
|
||||
i 第一个alpha的下标
|
||||
m 所有alpha的数目
|
||||
Returns:
|
||||
j 返回一个不为i的随机数,在0~m之间的整数值
|
||||
"""
|
||||
j = i
|
||||
while j == i:
|
||||
j = int(random.uniform(0, m))
|
||||
return j
|
||||
|
||||
|
||||
def clipAlpha(aj, H, L):
|
||||
"""clipAlpha(调整aj的值,使aj处于 L<=aj<=H)
|
||||
Args:
|
||||
aj 目标值
|
||||
H 最大值
|
||||
L 最小值
|
||||
Returns:
|
||||
aj 目标值
|
||||
"""
|
||||
if aj > H:
|
||||
aj = H
|
||||
if L > aj:
|
||||
aj = L
|
||||
return aj
|
||||
|
||||
|
||||
def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
|
||||
"""smoSimple
|
||||
|
||||
完整SMO算法外循环,与smoSimple有些类似,但这里的循环退出条件更多一些
|
||||
Args:
|
||||
dataMatIn 数据集
|
||||
classLabels 类别标签
|
||||
C 松弛变量(常量值),允许有些数据点可以处于分隔面的错误一侧。
|
||||
控制最大化间隔和保证大部分的函数间隔小于1.0这两个目标的权重。
|
||||
可以通过调节该参数达到不同的结果。
|
||||
toler 容错率
|
||||
maxIter 退出前最大的循环次数
|
||||
toler 容错率
|
||||
maxIter 退出前最大的循环次数
|
||||
kTup 包含核函数信息的元组
|
||||
Returns:
|
||||
b 模型的常量值
|
||||
alphas 拉格朗日乘子
|
||||
"""
|
||||
dataMatrix = mat(dataMatIn)
|
||||
# 矩阵转制 和 .T 一样的功能
|
||||
labelMat = mat(classLabels).transpose()
|
||||
m, n = shape(dataMatrix)
|
||||
|
||||
# 初始化 b和alphas(alpha有点类似权重值。)
|
||||
b = 0
|
||||
alphas = mat(zeros((m, 1)))
|
||||
|
||||
# 没有任何alpha改变的情况下遍历数据的次数
|
||||
oS = optStruct(mat(dataMatIn), mat(classLabels).transpose(), C, toler, kTup)
|
||||
iter = 0
|
||||
while (iter < maxIter):
|
||||
# w = calcWs(alphas, dataMatIn, classLabels)
|
||||
# print("w:", w)
|
||||
|
||||
# 记录alpha是否已经进行优化,每次循环时设为0,然后再对整个集合顺序遍历
|
||||
entireSet = True
|
||||
alphaPairsChanged = 0
|
||||
while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
|
||||
alphaPairsChanged = 0
|
||||
for i in range(m):
|
||||
# print 'alphas=', alphas
|
||||
# print 'labelMat=', labelMat
|
||||
# print 'multiply(alphas, labelMat)=', multiply(alphas, labelMat)
|
||||
# 我们预测的类别 y = w^Tx[i]+b; 其中因为 w = Σ(1~n) a[n]lable[n]x[n]
|
||||
fXi = float(multiply(alphas, labelMat).T*(dataMatrix*dataMatrix[i, :].T)) + b
|
||||
# 预测结果与真实结果比对,计算误差Ei
|
||||
Ei = fXi - float(labelMat[i])
|
||||
|
||||
# 约束条件 (KKT条件是解决最优化问题的时用到的一种方法。我们这里提到的最优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最小值。)
|
||||
# 0<=alphas[i]<=C,但由于0和C是边界值,我们无法进行优化,因为需要增加一个alphas和降低一个alphas。
|
||||
# 表示发生错误的概率:labelMat[i]*Ei 如果超出了 toler, 才需要优化。至于正负号,我们考虑绝对值就对了。
|
||||
if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):
|
||||
|
||||
# 如果满足优化的条件,我们就随机选取非i的一个点,进行优化比较
|
||||
j = selectJrand(i, m)
|
||||
# 预测j的结果
|
||||
fXj = float(multiply(alphas, labelMat).T*(dataMatrix*dataMatrix[j, :].T)) + b
|
||||
Ej = fXj - float(labelMat[j])
|
||||
alphaIold = alphas[i].copy()
|
||||
alphaJold = alphas[j].copy()
|
||||
|
||||
# L和H用于将alphas[j]调整到0-C之间。如果L==H,就不做任何改变,直接执行continue语句
|
||||
if (labelMat[i] != labelMat[j]):
|
||||
L = max(0, alphas[j] - alphas[i])
|
||||
H = min(C, C + alphas[j] - alphas[i])
|
||||
else:
|
||||
L = max(0, alphas[j] + alphas[i] - C)
|
||||
H = min(C, alphas[j] + alphas[i])
|
||||
if L == H:
|
||||
print("L==H")
|
||||
continue
|
||||
|
||||
# eta是alphas[j]的最优修改量,如果eta==0,需要退出for循环的当前迭代过程
|
||||
# 如果ETA为0,那么计算新的alphas[j]就比较麻烦了, 为什么呢? 因为2个值一样。
|
||||
# 2ab <= a^2 + b^2
|
||||
eta = 2.0 * dataMatrix[i, :]*dataMatrix[j, :].T - dataMatrix[i, :]*dataMatrix[i,:].T - dataMatrix[j, :]*dataMatrix[j, :].T
|
||||
if eta >= 0:
|
||||
print("eta>=0")
|
||||
continue
|
||||
|
||||
# 计算出一个新的alphas[j]值
|
||||
alphas[j] -= labelMat[j]*(Ei - Ej)/eta
|
||||
# 并使用辅助函数,以及L和H对其进行调整
|
||||
alphas[j] = clipAlpha(alphas[j], H, L)
|
||||
# 检查alpha[j]是否只是轻微的改变,如果是的话,就退出for循环。
|
||||
if (abs(alphas[j] - alphaJold) < 0.00001):
|
||||
print("j not moving enough")
|
||||
continue
|
||||
# 然后alphas[i]和alphas[j]同样进行改变,虽然改变的大小一样,但是改变的方向正好相反
|
||||
alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])
|
||||
# 在对alpha[i], alpha[j] 进行优化之后,给这两个alpha值设置一个常数b。
|
||||
b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
|
||||
b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
|
||||
if (0 < alphas[i]) and (C > alphas[i]):
|
||||
b = b1
|
||||
elif (0 < alphas[j]) and (C > alphas[j]):
|
||||
b = b2
|
||||
else:
|
||||
b = (b1 + b2)/2.0
|
||||
alphaPairsChanged += 1
|
||||
print("iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged))
|
||||
# 在for循环外,检查alpha值是否做了更新,如果在更新则将iter设为0后继续运行程序
|
||||
if (alphaPairsChanged == 0):
|
||||
if entireSet: # 在数据集上遍历所有可能的alpha
|
||||
for i in range(oS.m):
|
||||
alphaPairsChanged += innerL(i, oS)
|
||||
print("fullSet, iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged))
|
||||
iter += 1
|
||||
else:
|
||||
iter = 0
|
||||
else: # 遍历所有的非边界alpha值,也就是不在边界0或C上的值。
|
||||
nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
|
||||
for i in nonBoundIs:
|
||||
alphaPairsChanged += innerL(i, oS)
|
||||
print("non-bound, iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged))
|
||||
iter += 1
|
||||
if entireSet:
|
||||
entireSet = False # toggle entire set loop
|
||||
elif (alphaPairsChanged == 0):
|
||||
entireSet = True
|
||||
print("iteration number: %d" % iter)
|
||||
return b, alphas
|
||||
return oS.b, oS.alphas
|
||||
|
||||
|
||||
def calcWs(alphas, dataArr, classLabels):
|
||||
@@ -228,7 +168,7 @@ if __name__ == "__main__":
|
||||
# print labelArr
|
||||
|
||||
# b是常量值, alphas是拉格朗日乘子
|
||||
b, alphas = smoSimple(dataArr, labelArr, 0.6, 0.001, 40)
|
||||
b, alphas = smop(dataArr, labelArr, 0.6, 0.001, 40)
|
||||
print '/n/n/n'
|
||||
print 'b=', b
|
||||
print 'alphas[alphas>0]=', alphas[alphas > 0]
|
||||
@@ -268,33 +208,6 @@ def kernelTrans(X, A, kTup): # calc the kernel or transform data to a higher di
|
||||
return K
|
||||
|
||||
|
||||
class optStruct:
|
||||
"""
|
||||
建立的数据结构来保存所有的重要值
|
||||
"""
|
||||
def __init__(self, dataMatIn, classLabels, C, toler, kTup): # Initialize the structure with the parameters
|
||||
"""
|
||||
|
||||
Args:
|
||||
dataMatIn:
|
||||
classLabels:
|
||||
C:
|
||||
toler:
|
||||
kTup: 包含核函数信息的元组
|
||||
"""
|
||||
self.X = dataMatIn
|
||||
self.labelMat = classLabels
|
||||
self.C = C
|
||||
self.tol = toler
|
||||
self.m = shape(dataMatIn)[0] # 数据的行数
|
||||
self.alphas = mat(zeros((self.m, 1)))
|
||||
self.b = 0
|
||||
self.eCache = mat(zeros((self.m, 2))) # 误差缓存,第一列给出的是eCache是否有效的标志位,第二列给出的是实际的E值。
|
||||
self.K = mat(zeros((self.m, self.m)))
|
||||
for i in range(self.m):
|
||||
self.K[:, i] = kernelTrans(self.X, self.X[i, :], kTup)
|
||||
|
||||
|
||||
def calcEk(oS, k):
|
||||
"""
|
||||
计算E值并返回
|
||||
@@ -414,45 +327,6 @@ def innerL(i, oS):
|
||||
return 0
|
||||
|
||||
|
||||
def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup=('lin', 0)):
|
||||
"""
|
||||
完整SMO算法外循环,与smoSimple有些类似,但这里的循环退出条件更多一些
|
||||
Args:
|
||||
dataMatIn:
|
||||
classLabels:
|
||||
C:
|
||||
toler:
|
||||
maxIter:
|
||||
kTup:
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
oS = optStruct(mat(dataMatIn), mat(classLabels).transpose(), C, toler, kTup)
|
||||
iter = 0
|
||||
entireSet = True
|
||||
alphaPairsChanged = 0
|
||||
while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
|
||||
alphaPairsChanged = 0
|
||||
if entireSet: # 在数据集上遍历所有可能的alpha
|
||||
for i in range(oS.m):
|
||||
alphaPairsChanged += innerL(i, oS)
|
||||
print("fullSet, iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged))
|
||||
iter += 1
|
||||
else: # 遍历所有的非边界alpha值,也就是不在边界0或C上的值。
|
||||
nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
|
||||
for i in nonBoundIs:
|
||||
alphaPairsChanged += innerL(i, oS)
|
||||
print("non-bound, iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged))
|
||||
iter += 1
|
||||
if entireSet:
|
||||
entireSet = False # toggle entire set loop
|
||||
elif (alphaPairsChanged == 0):
|
||||
entireSet = True
|
||||
print("iteration number: %d" % iter)
|
||||
return oS.b, oS.alphas
|
||||
|
||||
|
||||
def testRbf(k1=1.3):
|
||||
dataArr, labelArr = loadDataSet('testSetRBF.txt')
|
||||
b, alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) # C=200 important
|
||||
|
||||
@@ -70,8 +70,8 @@ def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
|
||||
C 松弛变量(常量值),允许有些数据点可以处于分隔面的错误一侧。
|
||||
控制最大化间隔和保证大部分的函数间隔小于1.0这两个目标的权重。
|
||||
可以通过调节该参数达到不同的结果。
|
||||
toler 容错率
|
||||
maxIter 退出前最大的循环次数
|
||||
toler 容错率
|
||||
maxIter 退出前最大的循环次数
|
||||
Returns:
|
||||
b 模型的常量值
|
||||
alphas 拉格朗日乘子
|
||||
|
||||
Reference in New Issue
Block a user