更新完成 SVD 物品的主要特征空间

This commit is contained in:
jiangzhonglian
2017-09-01 23:17:58 +08:00
parent d61fda5f0e
commit 482d4f814c
5 changed files with 298 additions and 15 deletions

View File

@@ -150,11 +150,22 @@ def svdEst(dataMat, user, simMeas, item):
# 奇异值分解
# 在SVD分解之后我们只利用包含了90%能量值的奇异值这些奇异值会以NumPy数组的形式得以保存
U, Sigma, VT = la.svd(dataMat)
# # 分析 Sigma 的长度取值
# analyse_data(Sigma, 20)
# 如果要进行矩阵运算,就必须要用这些奇异值构建出一个对角矩阵
Sig4 = mat(eye(4) * Sigma[: 4])
# 利用U矩阵将物品转换到低维空间中构建转换后的物品
# 利用U矩阵将物品转换到低维空间中构建转换后的物品(物品+4个主要的特征)
xformedItems = dataMat.T * U[:, :4] * Sig4.I
# 对于给定的用户for循环在用户对应行的元素上进行遍历
print 'dataMat', shape(dataMat)
print 'U[:, :4]', shape(U[:, :4])
print 'Sig4.I', shape(Sig4.I)
print 'VT[:4, :]', shape(VT[:4, :])
print 'xformedItems', shape(xformedItems)
# 对于给定的用户for循环在用户对应行的元素上进行遍历
# 这和standEst()函数中的for循环的目的一样只不过这里的相似度计算时在低维空间下进行的。
for j in range(n):
userRating = dataMat[user, j]
@@ -205,7 +216,41 @@ def recommend(dataMat, user, N=3, simMeas=cosSim, estMethod=standEst):
return sorted(itemScores, key=lambda jj: jj[1], reverse=True)[: N]
def analyse_data(Sigma, loopNum=20):
"""analyse_data(分析 Sigma 的长度取值)
Args:
Sigma Sigma的值
loopNum 循环次数
"""
# 总方差的集合(总能量值)
Sig2 = Sigma**2
SigmaSum = sum(Sig2)
for i in range(loopNum):
SigmaI = sum(Sig2[:i+1])
'''
根据自己的业务情况,就行处理,设置对应的 Singma 次数
通常保留矩阵 80% 90% 的能量,就可以得到重要的特征并取出噪声。
'''
print '主成分:%s, 方差占比:%s%%' % (format(i+1, '2.0f'), format(SigmaI/SigmaSum*100, '4.2f'))
# 图像压缩函数
# 加载并转换数据
def imgLoadData(filename):
myl = []
# 打开文本文件,并从文件以数组方式读入字符
for line in open(filename).readlines():
newRow = []
for i in range(32):
newRow.append(int(line[i]))
myl.append(newRow)
# 矩阵调入后,就可以在屏幕上输出该矩阵
myMat = mat(myl)
return myMat
# 打印矩阵
def printMat(inMat, thresh=0.8):
# 由于矩阵保护了浮点数因此定义浅色和深色遍历所有矩阵元素当元素大于阀值时打印1否则打印0
@@ -220,25 +265,30 @@ def printMat(inMat, thresh=0.8):
# 实现图像压缩,允许基于任意给定的奇异值数目来重构图像
def imgCompress(numSV=3, thresh=0.8):
"""imgCompress( )
Args:
numSV Sigma长度
thresh 判断的阈值
"""
# 构建一个列表
myl = []
# 打开文本文件,并从文件以数组方式读入字符
for line in open('testData/testDigits/0_5.txt').readlines():
newRow = []
for i in range(32):
newRow.append(int(line[i]))
myl.append(newRow)
# 矩阵调入后,就可以在屏幕上输出该矩阵
myMat = mat(myl)
myMat = imgLoadData('input/14.SVD/0_5.txt')
print "****original matrix****"
# 对原始图像进行SVD分解并重构图像e
printMat(myMat, thresh)
# 通过Sigma 重新构成SigRecom来实现
# Sigma是一个对角矩阵因此需要建立一个全0矩阵然后将前面的那些奇异值填充到对角线上。
U, Sigma, VT = la.svd(myMat)
SigRecon = mat(zeros((numSV, numSV)))
for k in range(numSV):
SigRecon[k, k] = Sigma[k]
# SigRecon = mat(zeros((numSV, numSV)))
# for k in range(numSV):
# SigRecon[k, k] = Sigma[k]
# 分析插入的 Sigma 长度
analyse_data(Sigma, 20)
SigRecon = mat(eye(numSV) * Sigma[: numSV])
reconMat = U[:, :numSV] * SigRecon * VT[:numSV, :]
print "****reconstructed matrix using %d singular values *****" % numSV
printMat(reconMat, thresh)