更行决策树的部分内容

This commit is contained in:
jiangzhonglian
2017-03-17 19:56:37 +08:00
parent 816a580c8f
commit 53dee67337
7 changed files with 203 additions and 47 deletions

View File

@@ -20,8 +20,6 @@ def createDataSet():
无需传入参数
Returns:
返回数据集和对应的label标签
Raises:
"""
dataSet = [[1, 1, 'yes'],
[1, 1, 'yes'],
@@ -44,9 +42,7 @@ def calcShannonEnt(dataSet):
Args:
dataSet 数据集
Returns:
返回香农熵的计算值
Raises:
返回 每一组feature下的某个分类下香农熵的信息期望
"""
# 求list的长度表示计算参与训练的数据量
numEntries = len(dataSet)
@@ -81,8 +77,6 @@ def splitDataSet(dataSet, axis, value):
value 表示axis列对应的value值
Returns:
axis列为value的数据集【该数据集需要排除axis列】
Raises:
"""
retDataSet = []
for featVec in dataSet:
@@ -106,10 +100,8 @@ def chooseBestFeatureToSplit(dataSet):
dataSet 数据集
Returns:
bestFeature 最优的特征列
Raises:
"""
# 求第一行有多少列的 Feature
# 求第一行有多少列的 Feature, 最后一列是label列嘛
numFeatures = len(dataSet[0]) - 1
# label的信息熵
baseEntropy = calcShannonEnt(dataSet)
@@ -147,8 +139,6 @@ def majorityCnt(classList):
classList label列的集合
Returns:
bestFeature 最优的特征列
Raises:
"""
classCount = {}
for vote in classList:
@@ -172,6 +162,7 @@ def createTree(dataSet, labels):
# 选择最优的列得到最有列对应的label含义
bestFeat = chooseBestFeatureToSplit(dataSet)
# 获取label的名称
bestFeatLabel = labels[bestFeat]
# 初始化myTree
myTree = {bestFeatLabel: {}}
@@ -190,16 +181,26 @@ def createTree(dataSet, labels):
def classify(inputTree, featLabels, testVec):
# 获取tree的第一个节点对应的key值
"""classify(给输入的节点,进行分类)
Args:
inputTree 决策树模型
featLabels label标签对应的名称
testVec 测试输入的数据
Returns:
classLabel 分类的结果值需要映射label才能知道名称
"""
# 获取tree的根节点对于的key值
firstStr = inputTree.keys()[0]
# 获取第一个节点对应的value
# 通过key得到根节点对应的value
secondDict = inputTree[firstStr]
# 判断根节点的索引值然后根据testVec来获取对应的树分枝位置
# 判断根节点名称获取根节点在label中的先后顺序这样就知道输入的testVec怎么开始对照树来做分类
featIndex = featLabels.index(firstStr)
# 测试数据找到根节点对应的label位置也就知道从输入的数据的第几位来开始分类
key = testVec[featIndex]
valueOfFeat = secondDict[key]
print '+++', firstStr, 'xxx', secondDict, '---', key, '>>>', valueOfFeat
# 判断分枝是否结束
# 判断分枝是否结束: 判断valueOfFeat是否是dict类型
if isinstance(valueOfFeat, dict):
classLabel = classify(valueOfFeat, featLabels, testVec)
else:
@@ -240,7 +241,7 @@ if __name__ == "__main__":
myTree = createTree(myDat, copy.deepcopy(labels))
print myTree
# [1, 1]表示要取的分支上的节点位置,对应的结果值
# print classify(myTree, labels, [1, 1])
print classify(myTree, labels, [1, 1])
# 画图可视化展现
dtPlot.createPlot(myTree)

View File

@@ -128,5 +128,5 @@ def retrieveTree(i):
return listOfTrees[i]
myTree = retrieveTree(1)
createPlot(myTree)
# myTree = retrieveTree(1)
# createPlot(myTree)

View File

@@ -201,7 +201,7 @@ def plotROC(predStrengths, classLabels):
ySum += cur[1]
# draw line from cur to (cur[0]-delX, cur[1]-delY)
# 画点连线 (x1, x2, y1, y2)
print cur[0], cur[0]-delX, cur[1], cur[1]-delY
# print cur[0], cur[0]-delX, cur[1], cur[1]-delY
ax.plot([cur[0], cur[0]-delX], [cur[1], cur[1]-delY], c='b')
cur = (cur[0]-delX, cur[1]-delY)
# 画对角的虚线线

View File

@@ -1,12 +0,0 @@
def loadDataSet():
return [[1,3,4],[2,3,5],[1,2,3,5],[2,5]]
def createC1(dataSet):
c1=[]
for transaction in dataSet:
for item in transaction:
if not [item] in c1:
c1.append([item])
c1.sort()
return map(frozenset,c1)
def scanD(D,ck,minSupport):
ssCnt = {}

View File

@@ -1,19 +1,178 @@
'''
Created on Jun 14, 2011
FP-Growth FP means frequent pattern
the FP-Growth algorithm needs:
1. FP-tree (class treeNode)
2. header table (use dict)
This finds frequent itemsets similar to apriori but does not find association rules.
@author: Peter/片刻
'''
print(__doc__)
class treeNode:
def __init__(self,nameValue,numOccur,parentNode):
def __init__(self, nameValue, numOccur, parentNode):
self.name = nameValue
self.count = numOccur
self.nodeLink = None
# needs to be updated
self.parent = parentNode
self.children = {}
def inc(self,numOccur):
def inc(self, numOccur):
self.count += numOccur
def disp(self,ind=1):
print(' '*ind,self.name,' ',self.count)
def disp(self, ind=1):
print ' '*ind, self.name, ' ', self.count
for child in self.children.values():
child.disp(ind+1)
if __name__ == "__main__":
import fpGrowth
rootNode = fpGrowth.treeNode('pyramid',9,None)
rootNode.children['eye']=fpGrowth.treeNode('eye',13,None)
rootNode.disp()
def createTree(dataSet, minSup=1): #create FP-tree from dataset but don't mine
headerTable = {}
#go over dataSet twice
for trans in dataSet:#first pass counts frequency of occurance
for item in trans:
headerTable[item] = headerTable.get(item, 0) + dataSet[trans]
for k in headerTable.keys(): #remove items not meeting minSup
if headerTable[k] < minSup:
del(headerTable[k])
freqItemSet = set(headerTable.keys())
#print 'freqItemSet: ',freqItemSet
if len(freqItemSet) == 0: return None, None #if no items meet min support -->get out
for k in headerTable:
headerTable[k] = [headerTable[k], None] #reformat headerTable to use Node link
#print 'headerTable: ',headerTable
retTree = treeNode('Null Set', 1, None) #create tree
for tranSet, count in dataSet.items(): #go through dataset 2nd time
localD = {}
for item in tranSet: #put transaction items in order
if item in freqItemSet:
localD[item] = headerTable[item][0]
if len(localD) > 0:
orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: p[1], reverse=True)]
updateTree(orderedItems, retTree, headerTable, count)#populate tree with ordered freq itemset
return retTree, headerTable #return tree and header table
def updateTree(items, inTree, headerTable, count):
if items[0] in inTree.children:#check if orderedItems[0] in retTree.children
inTree.children[items[0]].inc(count) #incrament count
else: #add items[0] to inTree.children
inTree.children[items[0]] = treeNode(items[0], count, inTree)
if headerTable[items[0]][1] == None: #update header table
headerTable[items[0]][1] = inTree.children[items[0]]
else:
updateHeader(headerTable[items[0]][1], inTree.children[items[0]])
if len(items) > 1:#call updateTree() with remaining ordered items
updateTree(items[1::], inTree.children[items[0]], headerTable, count)
def updateHeader(nodeToTest, targetNode): #this version does not use recursion
while (nodeToTest.nodeLink != None): #Do not use recursion to traverse a linked list!
nodeToTest = nodeToTest.nodeLink
nodeToTest.nodeLink = targetNode
def ascendTree(leafNode, prefixPath): #ascends from leaf node to root
if leafNode.parent != None:
prefixPath.append(leafNode.name)
ascendTree(leafNode.parent, prefixPath)
def findPrefixPath(basePat, treeNode): #treeNode comes from header table
condPats = {}
while treeNode != None:
prefixPath = []
ascendTree(treeNode, prefixPath)
if len(prefixPath) > 1:
condPats[frozenset(prefixPath[1:])] = treeNode.count
treeNode = treeNode.nodeLink
return condPats
def mineTree(inTree, headerTable, minSup, preFix, freqItemList):
bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p: p[1])]#(sort header table)
for basePat in bigL: #start from bottom of header table
newFreqSet = preFix.copy()
newFreqSet.add(basePat)
#print 'finalFrequent Item: ',newFreqSet #append to set
freqItemList.append(newFreqSet)
condPattBases = findPrefixPath(basePat, headerTable[basePat][1])
#print 'condPattBases :',basePat, condPattBases
#2. construct cond FP-tree from cond. pattern base
myCondTree, myHead = createTree(condPattBases, minSup)
#print 'head from conditional tree: ', myHead
if myHead != None: #3. mine cond. FP-tree
#print 'conditional tree for: ',newFreqSet
#myCondTree.disp(1)
mineTree(myCondTree, myHead, minSup, newFreqSet, freqItemList)
def loadSimpDat():
simpDat = [['r', 'z', 'h', 'j', 'p'],
['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
['z'],
['r', 'x', 'n', 'o', 's'],
['y', 'r', 'x', 'z', 'q', 't', 'p'],
['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
return simpDat
def createInitSet(dataSet):
retDict = {}
for trans in dataSet:
retDict[frozenset(trans)] = 1
return retDict
import twitter
from time import sleep
import re
def textParse(bigString):
urlsRemoved = re.sub('(http:[/][/]|www.)([a-z]|[A-Z]|[0-9]|[/.]|[~])*', '', bigString)
listOfTokens = re.split(r'\W*', urlsRemoved)
return [tok.lower() for tok in listOfTokens if len(tok) > 2]
def getLotsOfTweets(searchStr):
CONSUMER_KEY = ''
CONSUMER_SECRET = ''
ACCESS_TOKEN_KEY = ''
ACCESS_TOKEN_SECRET = ''
api = twitter.Api(consumer_key=CONSUMER_KEY, consumer_secret=CONSUMER_SECRET,
access_token_key=ACCESS_TOKEN_KEY,
access_token_secret=ACCESS_TOKEN_SECRET)
#you can get 1500 results 15 pages * 100 per page
resultsPages = []
for i in range(1,15):
print "fetching page %d" % i
searchResults = api.GetSearch(searchStr, per_page=100, page=i)
resultsPages.append(searchResults)
sleep(6)
return resultsPages
def mineTweets(tweetArr, minSup=5):
parsedList = []
for i in range(14):
for j in range(100):
parsedList.append(textParse(tweetArr[i][j].text))
initSet = createInitSet(parsedList)
myFPtree, myHeaderTab = createTree(initSet, minSup)
myFreqList = []
mineTree(myFPtree, myHeaderTab, minSup, set([]), myFreqList)
return myFreqList
#minSup = 3
#simpDat = loadSimpDat()
#initSet = createInitSet(simpDat)
#myFPtree, myHeaderTab = createTree(initSet, minSup)
#myFPtree.disp()
#myFreqList = []
#mineTree(myFPtree, myHeaderTab, minSup, set([]), myFreqList)