mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-11 22:35:35 +08:00
更行决策树的部分内容
This commit is contained in:
@@ -20,8 +20,6 @@ def createDataSet():
|
||||
无需传入参数
|
||||
Returns:
|
||||
返回数据集和对应的label标签
|
||||
Raises:
|
||||
|
||||
"""
|
||||
dataSet = [[1, 1, 'yes'],
|
||||
[1, 1, 'yes'],
|
||||
@@ -44,9 +42,7 @@ def calcShannonEnt(dataSet):
|
||||
Args:
|
||||
dataSet 数据集
|
||||
Returns:
|
||||
返回香农熵的计算值
|
||||
Raises:
|
||||
|
||||
返回 每一组feature下的某个分类下,香农熵的信息期望
|
||||
"""
|
||||
# 求list的长度,表示计算参与训练的数据量
|
||||
numEntries = len(dataSet)
|
||||
@@ -81,8 +77,6 @@ def splitDataSet(dataSet, axis, value):
|
||||
value 表示axis列对应的value值
|
||||
Returns:
|
||||
axis列为value的数据集【该数据集需要排除axis列】
|
||||
Raises:
|
||||
|
||||
"""
|
||||
retDataSet = []
|
||||
for featVec in dataSet:
|
||||
@@ -106,10 +100,8 @@ def chooseBestFeatureToSplit(dataSet):
|
||||
dataSet 数据集
|
||||
Returns:
|
||||
bestFeature 最优的特征列
|
||||
Raises:
|
||||
|
||||
"""
|
||||
# 求第一行有多少列的 Feature
|
||||
# 求第一行有多少列的 Feature, 最后一列是label列嘛
|
||||
numFeatures = len(dataSet[0]) - 1
|
||||
# label的信息熵
|
||||
baseEntropy = calcShannonEnt(dataSet)
|
||||
@@ -147,8 +139,6 @@ def majorityCnt(classList):
|
||||
classList label列的集合
|
||||
Returns:
|
||||
bestFeature 最优的特征列
|
||||
Raises:
|
||||
|
||||
"""
|
||||
classCount = {}
|
||||
for vote in classList:
|
||||
@@ -172,6 +162,7 @@ def createTree(dataSet, labels):
|
||||
|
||||
# 选择最优的列,得到最有列对应的label含义
|
||||
bestFeat = chooseBestFeatureToSplit(dataSet)
|
||||
# 获取label的名称
|
||||
bestFeatLabel = labels[bestFeat]
|
||||
# 初始化myTree
|
||||
myTree = {bestFeatLabel: {}}
|
||||
@@ -190,16 +181,26 @@ def createTree(dataSet, labels):
|
||||
|
||||
|
||||
def classify(inputTree, featLabels, testVec):
|
||||
# 获取tree的第一个节点对应的key值
|
||||
"""classify(给输入的节点,进行分类)
|
||||
|
||||
Args:
|
||||
inputTree 决策树模型
|
||||
featLabels label标签对应的名称
|
||||
testVec 测试输入的数据
|
||||
Returns:
|
||||
classLabel 分类的结果值,需要映射label才能知道名称
|
||||
"""
|
||||
# 获取tree的根节点对于的key值
|
||||
firstStr = inputTree.keys()[0]
|
||||
# 获取第一个节点对应的value值
|
||||
# 通过key得到根节点对应的value
|
||||
secondDict = inputTree[firstStr]
|
||||
# 判断根节点的索引值,然后根据testVec来获取对应的树分枝位置
|
||||
# 判断根节点名称获取根节点在label中的先后顺序,这样就知道输入的testVec怎么开始对照树来做分类
|
||||
featIndex = featLabels.index(firstStr)
|
||||
# 测试数据,找到根节点对应的label位置,也就知道从输入的数据的第几位来开始分类
|
||||
key = testVec[featIndex]
|
||||
valueOfFeat = secondDict[key]
|
||||
print '+++', firstStr, 'xxx', secondDict, '---', key, '>>>', valueOfFeat
|
||||
# 判断分枝是否结束
|
||||
# 判断分枝是否结束: 判断valueOfFeat是否是dict类型
|
||||
if isinstance(valueOfFeat, dict):
|
||||
classLabel = classify(valueOfFeat, featLabels, testVec)
|
||||
else:
|
||||
@@ -240,7 +241,7 @@ if __name__ == "__main__":
|
||||
myTree = createTree(myDat, copy.deepcopy(labels))
|
||||
print myTree
|
||||
# [1, 1]表示要取的分支上的节点位置,对应的结果值
|
||||
# print classify(myTree, labels, [1, 1])
|
||||
print classify(myTree, labels, [1, 1])
|
||||
|
||||
# 画图可视化展现
|
||||
dtPlot.createPlot(myTree)
|
||||
|
||||
@@ -128,5 +128,5 @@ def retrieveTree(i):
|
||||
return listOfTrees[i]
|
||||
|
||||
|
||||
myTree = retrieveTree(1)
|
||||
createPlot(myTree)
|
||||
# myTree = retrieveTree(1)
|
||||
# createPlot(myTree)
|
||||
|
||||
@@ -201,7 +201,7 @@ def plotROC(predStrengths, classLabels):
|
||||
ySum += cur[1]
|
||||
# draw line from cur to (cur[0]-delX, cur[1]-delY)
|
||||
# 画点连线 (x1, x2, y1, y2)
|
||||
print cur[0], cur[0]-delX, cur[1], cur[1]-delY
|
||||
# print cur[0], cur[0]-delX, cur[1], cur[1]-delY
|
||||
ax.plot([cur[0], cur[0]-delX], [cur[1], cur[1]-delY], c='b')
|
||||
cur = (cur[0]-delX, cur[1]-delY)
|
||||
# 画对角的虚线线
|
||||
|
||||
@@ -1,12 +0,0 @@
|
||||
def loadDataSet():
|
||||
return [[1,3,4],[2,3,5],[1,2,3,5],[2,5]]
|
||||
def createC1(dataSet):
|
||||
c1=[]
|
||||
for transaction in dataSet:
|
||||
for item in transaction:
|
||||
if not [item] in c1:
|
||||
c1.append([item])
|
||||
c1.sort()
|
||||
return map(frozenset,c1)
|
||||
def scanD(D,ck,minSupport):
|
||||
ssCnt = {}
|
||||
@@ -1,19 +1,178 @@
|
||||
'''
|
||||
Created on Jun 14, 2011
|
||||
FP-Growth FP means frequent pattern
|
||||
the FP-Growth algorithm needs:
|
||||
1. FP-tree (class treeNode)
|
||||
2. header table (use dict)
|
||||
|
||||
This finds frequent itemsets similar to apriori but does not find association rules.
|
||||
|
||||
@author: Peter/片刻
|
||||
'''
|
||||
print(__doc__)
|
||||
|
||||
|
||||
class treeNode:
|
||||
def __init__(self,nameValue,numOccur,parentNode):
|
||||
def __init__(self, nameValue, numOccur, parentNode):
|
||||
self.name = nameValue
|
||||
self.count = numOccur
|
||||
self.nodeLink = None
|
||||
# needs to be updated
|
||||
self.parent = parentNode
|
||||
self.children = {}
|
||||
def inc(self,numOccur):
|
||||
|
||||
def inc(self, numOccur):
|
||||
self.count += numOccur
|
||||
def disp(self,ind=1):
|
||||
print(' '*ind,self.name,' ',self.count)
|
||||
|
||||
def disp(self, ind=1):
|
||||
print ' '*ind, self.name, ' ', self.count
|
||||
for child in self.children.values():
|
||||
child.disp(ind+1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
import fpGrowth
|
||||
rootNode = fpGrowth.treeNode('pyramid',9,None)
|
||||
rootNode.children['eye']=fpGrowth.treeNode('eye',13,None)
|
||||
rootNode.disp()
|
||||
|
||||
def createTree(dataSet, minSup=1): #create FP-tree from dataset but don't mine
|
||||
headerTable = {}
|
||||
#go over dataSet twice
|
||||
for trans in dataSet:#first pass counts frequency of occurance
|
||||
for item in trans:
|
||||
headerTable[item] = headerTable.get(item, 0) + dataSet[trans]
|
||||
for k in headerTable.keys(): #remove items not meeting minSup
|
||||
if headerTable[k] < minSup:
|
||||
del(headerTable[k])
|
||||
freqItemSet = set(headerTable.keys())
|
||||
#print 'freqItemSet: ',freqItemSet
|
||||
if len(freqItemSet) == 0: return None, None #if no items meet min support -->get out
|
||||
for k in headerTable:
|
||||
headerTable[k] = [headerTable[k], None] #reformat headerTable to use Node link
|
||||
#print 'headerTable: ',headerTable
|
||||
retTree = treeNode('Null Set', 1, None) #create tree
|
||||
for tranSet, count in dataSet.items(): #go through dataset 2nd time
|
||||
localD = {}
|
||||
for item in tranSet: #put transaction items in order
|
||||
if item in freqItemSet:
|
||||
localD[item] = headerTable[item][0]
|
||||
if len(localD) > 0:
|
||||
orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: p[1], reverse=True)]
|
||||
updateTree(orderedItems, retTree, headerTable, count)#populate tree with ordered freq itemset
|
||||
return retTree, headerTable #return tree and header table
|
||||
|
||||
|
||||
def updateTree(items, inTree, headerTable, count):
|
||||
if items[0] in inTree.children:#check if orderedItems[0] in retTree.children
|
||||
inTree.children[items[0]].inc(count) #incrament count
|
||||
else: #add items[0] to inTree.children
|
||||
inTree.children[items[0]] = treeNode(items[0], count, inTree)
|
||||
if headerTable[items[0]][1] == None: #update header table
|
||||
headerTable[items[0]][1] = inTree.children[items[0]]
|
||||
else:
|
||||
updateHeader(headerTable[items[0]][1], inTree.children[items[0]])
|
||||
if len(items) > 1:#call updateTree() with remaining ordered items
|
||||
updateTree(items[1::], inTree.children[items[0]], headerTable, count)
|
||||
|
||||
|
||||
def updateHeader(nodeToTest, targetNode): #this version does not use recursion
|
||||
while (nodeToTest.nodeLink != None): #Do not use recursion to traverse a linked list!
|
||||
nodeToTest = nodeToTest.nodeLink
|
||||
nodeToTest.nodeLink = targetNode
|
||||
|
||||
|
||||
def ascendTree(leafNode, prefixPath): #ascends from leaf node to root
|
||||
if leafNode.parent != None:
|
||||
prefixPath.append(leafNode.name)
|
||||
ascendTree(leafNode.parent, prefixPath)
|
||||
|
||||
|
||||
def findPrefixPath(basePat, treeNode): #treeNode comes from header table
|
||||
condPats = {}
|
||||
while treeNode != None:
|
||||
prefixPath = []
|
||||
ascendTree(treeNode, prefixPath)
|
||||
if len(prefixPath) > 1:
|
||||
condPats[frozenset(prefixPath[1:])] = treeNode.count
|
||||
treeNode = treeNode.nodeLink
|
||||
return condPats
|
||||
|
||||
|
||||
def mineTree(inTree, headerTable, minSup, preFix, freqItemList):
|
||||
bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p: p[1])]#(sort header table)
|
||||
for basePat in bigL: #start from bottom of header table
|
||||
newFreqSet = preFix.copy()
|
||||
newFreqSet.add(basePat)
|
||||
#print 'finalFrequent Item: ',newFreqSet #append to set
|
||||
freqItemList.append(newFreqSet)
|
||||
condPattBases = findPrefixPath(basePat, headerTable[basePat][1])
|
||||
#print 'condPattBases :',basePat, condPattBases
|
||||
#2. construct cond FP-tree from cond. pattern base
|
||||
myCondTree, myHead = createTree(condPattBases, minSup)
|
||||
#print 'head from conditional tree: ', myHead
|
||||
if myHead != None: #3. mine cond. FP-tree
|
||||
#print 'conditional tree for: ',newFreqSet
|
||||
#myCondTree.disp(1)
|
||||
mineTree(myCondTree, myHead, minSup, newFreqSet, freqItemList)
|
||||
|
||||
|
||||
def loadSimpDat():
|
||||
simpDat = [['r', 'z', 'h', 'j', 'p'],
|
||||
['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
|
||||
['z'],
|
||||
['r', 'x', 'n', 'o', 's'],
|
||||
['y', 'r', 'x', 'z', 'q', 't', 'p'],
|
||||
['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
|
||||
return simpDat
|
||||
|
||||
|
||||
def createInitSet(dataSet):
|
||||
retDict = {}
|
||||
for trans in dataSet:
|
||||
retDict[frozenset(trans)] = 1
|
||||
return retDict
|
||||
|
||||
|
||||
import twitter
|
||||
from time import sleep
|
||||
import re
|
||||
|
||||
|
||||
def textParse(bigString):
|
||||
urlsRemoved = re.sub('(http:[/][/]|www.)([a-z]|[A-Z]|[0-9]|[/.]|[~])*', '', bigString)
|
||||
listOfTokens = re.split(r'\W*', urlsRemoved)
|
||||
return [tok.lower() for tok in listOfTokens if len(tok) > 2]
|
||||
|
||||
|
||||
def getLotsOfTweets(searchStr):
|
||||
CONSUMER_KEY = ''
|
||||
CONSUMER_SECRET = ''
|
||||
ACCESS_TOKEN_KEY = ''
|
||||
ACCESS_TOKEN_SECRET = ''
|
||||
api = twitter.Api(consumer_key=CONSUMER_KEY, consumer_secret=CONSUMER_SECRET,
|
||||
access_token_key=ACCESS_TOKEN_KEY,
|
||||
access_token_secret=ACCESS_TOKEN_SECRET)
|
||||
#you can get 1500 results 15 pages * 100 per page
|
||||
resultsPages = []
|
||||
for i in range(1,15):
|
||||
print "fetching page %d" % i
|
||||
searchResults = api.GetSearch(searchStr, per_page=100, page=i)
|
||||
resultsPages.append(searchResults)
|
||||
sleep(6)
|
||||
return resultsPages
|
||||
|
||||
|
||||
def mineTweets(tweetArr, minSup=5):
|
||||
parsedList = []
|
||||
for i in range(14):
|
||||
for j in range(100):
|
||||
parsedList.append(textParse(tweetArr[i][j].text))
|
||||
initSet = createInitSet(parsedList)
|
||||
myFPtree, myHeaderTab = createTree(initSet, minSup)
|
||||
myFreqList = []
|
||||
mineTree(myFPtree, myHeaderTab, minSup, set([]), myFreqList)
|
||||
return myFreqList
|
||||
|
||||
|
||||
#minSup = 3
|
||||
#simpDat = loadSimpDat()
|
||||
#initSet = createInitSet(simpDat)
|
||||
#myFPtree, myHeaderTab = createTree(initSet, minSup)
|
||||
#myFPtree.disp()
|
||||
#myFreqList = []
|
||||
#mineTree(myFPtree, myHeaderTab, minSup, set([]), myFreqList)
|
||||
|
||||
Reference in New Issue
Block a user