mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-12 23:05:14 +08:00
更行决策树的部分内容
This commit is contained in:
@@ -20,8 +20,6 @@ def createDataSet():
|
||||
无需传入参数
|
||||
Returns:
|
||||
返回数据集和对应的label标签
|
||||
Raises:
|
||||
|
||||
"""
|
||||
dataSet = [[1, 1, 'yes'],
|
||||
[1, 1, 'yes'],
|
||||
@@ -44,9 +42,7 @@ def calcShannonEnt(dataSet):
|
||||
Args:
|
||||
dataSet 数据集
|
||||
Returns:
|
||||
返回香农熵的计算值
|
||||
Raises:
|
||||
|
||||
返回 每一组feature下的某个分类下,香农熵的信息期望
|
||||
"""
|
||||
# 求list的长度,表示计算参与训练的数据量
|
||||
numEntries = len(dataSet)
|
||||
@@ -81,8 +77,6 @@ def splitDataSet(dataSet, axis, value):
|
||||
value 表示axis列对应的value值
|
||||
Returns:
|
||||
axis列为value的数据集【该数据集需要排除axis列】
|
||||
Raises:
|
||||
|
||||
"""
|
||||
retDataSet = []
|
||||
for featVec in dataSet:
|
||||
@@ -106,10 +100,8 @@ def chooseBestFeatureToSplit(dataSet):
|
||||
dataSet 数据集
|
||||
Returns:
|
||||
bestFeature 最优的特征列
|
||||
Raises:
|
||||
|
||||
"""
|
||||
# 求第一行有多少列的 Feature
|
||||
# 求第一行有多少列的 Feature, 最后一列是label列嘛
|
||||
numFeatures = len(dataSet[0]) - 1
|
||||
# label的信息熵
|
||||
baseEntropy = calcShannonEnt(dataSet)
|
||||
@@ -147,8 +139,6 @@ def majorityCnt(classList):
|
||||
classList label列的集合
|
||||
Returns:
|
||||
bestFeature 最优的特征列
|
||||
Raises:
|
||||
|
||||
"""
|
||||
classCount = {}
|
||||
for vote in classList:
|
||||
@@ -172,6 +162,7 @@ def createTree(dataSet, labels):
|
||||
|
||||
# 选择最优的列,得到最有列对应的label含义
|
||||
bestFeat = chooseBestFeatureToSplit(dataSet)
|
||||
# 获取label的名称
|
||||
bestFeatLabel = labels[bestFeat]
|
||||
# 初始化myTree
|
||||
myTree = {bestFeatLabel: {}}
|
||||
@@ -190,16 +181,26 @@ def createTree(dataSet, labels):
|
||||
|
||||
|
||||
def classify(inputTree, featLabels, testVec):
|
||||
# 获取tree的第一个节点对应的key值
|
||||
"""classify(给输入的节点,进行分类)
|
||||
|
||||
Args:
|
||||
inputTree 决策树模型
|
||||
featLabels label标签对应的名称
|
||||
testVec 测试输入的数据
|
||||
Returns:
|
||||
classLabel 分类的结果值,需要映射label才能知道名称
|
||||
"""
|
||||
# 获取tree的根节点对于的key值
|
||||
firstStr = inputTree.keys()[0]
|
||||
# 获取第一个节点对应的value值
|
||||
# 通过key得到根节点对应的value
|
||||
secondDict = inputTree[firstStr]
|
||||
# 判断根节点的索引值,然后根据testVec来获取对应的树分枝位置
|
||||
# 判断根节点名称获取根节点在label中的先后顺序,这样就知道输入的testVec怎么开始对照树来做分类
|
||||
featIndex = featLabels.index(firstStr)
|
||||
# 测试数据,找到根节点对应的label位置,也就知道从输入的数据的第几位来开始分类
|
||||
key = testVec[featIndex]
|
||||
valueOfFeat = secondDict[key]
|
||||
print '+++', firstStr, 'xxx', secondDict, '---', key, '>>>', valueOfFeat
|
||||
# 判断分枝是否结束
|
||||
# 判断分枝是否结束: 判断valueOfFeat是否是dict类型
|
||||
if isinstance(valueOfFeat, dict):
|
||||
classLabel = classify(valueOfFeat, featLabels, testVec)
|
||||
else:
|
||||
@@ -240,7 +241,7 @@ if __name__ == "__main__":
|
||||
myTree = createTree(myDat, copy.deepcopy(labels))
|
||||
print myTree
|
||||
# [1, 1]表示要取的分支上的节点位置,对应的结果值
|
||||
# print classify(myTree, labels, [1, 1])
|
||||
print classify(myTree, labels, [1, 1])
|
||||
|
||||
# 画图可视化展现
|
||||
dtPlot.createPlot(myTree)
|
||||
|
||||
Reference in New Issue
Block a user