更新 11.apriori算法

This commit is contained in:
jiangzhonglian
2017-04-02 19:35:23 +08:00
parent 1c766d615f
commit 57af8aca11

View File

@@ -303,17 +303,17 @@ def main():
# # 收集并准备数据
# dataMat, labelMat = loadDataSet("%s/resources/Apriori_testdata.txt" % project_dir)
# # 现在的的测试
# # 1. 加载数据
# dataSet = loadDataSet()
# print(dataSet)
# # 调用 apriori 做购物篮分析
# # 支持度满足阈值的key集合L和所有元素和支持度的全集suppoerData
# L, supportData = apriori(dataSet, minSupport=0.5)
# print L, '\n', supportData
# print '\ngenerateRules\n'
# rules = generateRules(L, supportData, minConf=0.25)
# print rules
# 现在的的测试
# 1. 加载数据
dataSet = loadDataSet()
print(dataSet)
# 调用 apriori 做购物篮分析
# 支持度满足阈值的key集合L和所有元素和支持度的全集suppoerData
L, supportData = apriori(dataSet, minSupport=0.5)
print L, '\n', supportData
print '\ngenerateRules\n'
rules = generateRules(L, supportData, minConf=0.25)
print rules
# # 项目实战
# # 构建美国国会投票记录的事务数据集
@@ -328,20 +328,20 @@ def main():
# rules = generateRules(L, supportData, minConf=0.95)
# print rules
# 项目实战
# 发现毒蘑菇的相似特性
# 得到全集的数据
dataSet = [line.split() for line in open("testData/Apriori_mushroom.dat").readlines()]
L, supportData = apriori(dataSet, minSupport=0.3)
# 2表示毒蘑菇1表示可食用的蘑菇
# 找出关于2的频繁子项出来就知道如果是毒蘑菇那么出现频繁的也可能是毒蘑菇
for item in L[1]:
if item.intersection('2'):
print item
# # 项目实战
# # 发现毒蘑菇的相似特性
# # 得到全集的数据
# dataSet = [line.split() for line in open("testData/Apriori_mushroom.dat").readlines()]
# L, supportData = apriori(dataSet, minSupport=0.3)
# # 2表示毒蘑菇1表示可食用的蘑菇
# # 找出关于2的频繁子项出来就知道如果是毒蘑菇那么出现频繁的也可能是毒蘑菇
# for item in L[1]:
# if item.intersection('2'):
# print item
for item in L[2]:
if item.intersection('2'):
print item
# for item in L[2]:
# if item.intersection('2'):
# print item
if __name__ == "__main__":