完全推荐系统的python代码

This commit is contained in:
jiangzhonglian
2017-05-17 21:19:44 +08:00
parent fa72c038ca
commit 5a7c0892eb
7 changed files with 89 additions and 46 deletions

View File

@@ -1,13 +1,20 @@
#-*- coding: utf-8 -*-
#!/usr/bin/python
# coding:utf8
'''
Created on 2015-06-22
@author: Lockvictor
Update on 2017-05-16
@author: Lockvictor/片刻
《推荐系统实践》协同过滤算法源代码
参考地址https://github.com/Lockvictor/MovieLens-RecSys
更新地址https://github.com/apachecn/MachineLearning
'''
import sys, random, math
import sys
import math
import random
from operator import itemgetter
print(__doc__)
# 作用:使得随机数据可预测
random.seed(0)
@@ -17,9 +24,11 @@ class ItemBasedCF():
self.trainset = {}
self.testset = {}
# n_sim_user: top 20个用户 n_rec_movie: top 10个推荐结果
self.n_sim_movie = 20
self.n_rec_movie = 10
# user_sim_mat: 电影之间的相似度, movie_popular: 电影的出现次数, movie_count: 总电影数量
self.movie_sim_mat = {}
self.movie_popular = {}
self.movie_count = 0
@@ -27,28 +36,42 @@ class ItemBasedCF():
print >> sys.stderr, 'Similar movie number = %d' % self.n_sim_movie
print >> sys.stderr, 'Recommended movie number = %d' % self.n_rec_movie
@staticmethod
def loadfile(filename):
''' load a file, return a generator. '''
"""loadfile(加载文件,返回一个生成器)
Args:
filename 文件名
Returns:
line 行数据,去空格
"""
fp = open(filename, 'r')
for i, line in enumerate(fp):
yield line.strip('\r\n')
if i % 100000 == 0:
if i > 0 and i % 100000 == 0:
print >> sys.stderr, 'loading %s(%s)' % (filename, i)
fp.close()
print >> sys.stderr, 'load %s succ' % filename
print >> sys.stderr, 'load %s success' % filename
def generate_dataset(self, filename, pivot=0.7):
''' load rating data and split it to training set and test set '''
"""loadfile(加载文件将数据集按照7:3 进行随机拆分)
Args:
filename 文件名
pivot 拆分比例
"""
trainset_len = 0
testset_len = 0
for line in self.loadfile(filename):
# 用户ID电影名称评分时间戳
user, movie, rating, _ = line.split('::')
# split the data by pivot
# 通过pivot和随机函数比较然后初始化用户和对应的值
if (random.random() < pivot):
# dict.setdefault(key, default=None)
# key -- 查找的键值
# default -- 键不存在时,设置的默认键值
self.trainset.setdefault(user, {})
self.trainset[user][movie] = int(rating)
trainset_len += 1
@@ -57,83 +80,93 @@ class ItemBasedCF():
self.testset[user][movie] = int(rating)
testset_len += 1
print >> sys.stderr, 'split training set and test set succ'
print >> sys.stderr, '分离训练集和测试集成功'
print >> sys.stderr, 'train set = %s' % trainset_len
print >> sys.stderr, 'test set = %s' % testset_len
def calc_movie_sim(self):
''' calculate movie similarity matrix '''
"""calc_movie_sim(计算用户之间的相似度)"""
print >> sys.stderr, 'counting movies number and popularity...'
for user, movies in self.trainset.iteritems():
for movie in movies:
# count item popularity
# count item popularity
if movie not in self.movie_popular:
self.movie_popular[movie] = 0
self.movie_popular[movie] += 1
print >> sys.stderr, 'count movies number and popularity succ'
print >> sys.stderr, 'count movies number and popularity success'
# save the total number of movies
self.movie_count = len(self.movie_popular)
print >> sys.stderr, 'total movie number = %d' % self.movie_count
# count co-rated users between items
# 统计在相同用户时,不同电影同时出现的次数
itemsim_mat = self.movie_sim_mat
print >> sys.stderr, 'building co-rated users matrix...'
for user, movies in self.trainset.iteritems():
for m1 in movies:
for m2 in movies:
if m1 == m2: continue
itemsim_mat.setdefault(m1,{})
itemsim_mat[m1].setdefault(m2,0)
if m1 == m2:
continue
itemsim_mat.setdefault(m1, {})
itemsim_mat[m1].setdefault(m2, 0)
itemsim_mat[m1][m2] += 1
print >> sys.stderr, 'build co-rated users matrix success'
print >> sys.stderr, 'build co-rated users matrix succ'
# calculate similarity matrix
# calculate similarity matrix
print >> sys.stderr, 'calculating movie similarity matrix...'
simfactor_count = 0
PRINT_STEP = 2000000
for m1, related_movies in itemsim_mat.iteritems():
for m2, count in related_movies.iteritems():
itemsim_mat[m1][m2] = count / math.sqrt(
self.movie_popular[m1] * self.movie_popular[m2])
# 余弦相似度
itemsim_mat[m1][m2] = count / math.sqrt(self.movie_popular[m1] * self.movie_popular[m2])
simfactor_count += 1
# 打印进度条
if simfactor_count % PRINT_STEP == 0:
print >> sys.stderr, 'calculating movie similarity factor(%d)' % simfactor_count
print >> sys.stderr, 'calculate movie similarity matrix(similarity factor) succ'
print >> sys.stderr, 'Total similarity factor number = %d' %simfactor_count
print >> sys.stderr, 'calculate movie similarity matrix(similarity factor) success'
print >> sys.stderr, 'Total similarity factor number = %d' % simfactor_count
# @profile
def recommend(self, user):
"""recommend(找出top K的电影对电影进行相似度sum的排序取出top N的电影数)
Args:
user 用户
Returns:
rec_movie 电影推荐列表,按照相似度从大到小的排序
"""
''' Find K similar movies and recommend N movies. '''
K = self.n_sim_movie
N = self.n_rec_movie
rank = {}
watched_movies = self.trainset[user]
# 计算top K 电影的相似度
# rating=电影评分, w=不同电影出现的次数
# 耗时分析98.2%的时间在 line-154行
for movie, rating in watched_movies.iteritems():
for related_movie, w in sorted(self.movie_sim_mat[movie].items(),
key=itemgetter(1), reverse=True)[:K]:
for related_movie, w in sorted(self.movie_sim_mat[movie].items(), key=itemgetter(1), reverse=True)[0:K]:
if related_movie in watched_movies:
continue
rank.setdefault(related_movie, 0)
rank[related_movie] += w * rating
# return the N best movies
return sorted(rank.items(), key=itemgetter(1), reverse=True)[:N]
return sorted(rank.items(), key=itemgetter(1), reverse=True)[0:N]
def evaluate(self):
''' return precision, recall, coverage and popularity '''
print >> sys.stderr, 'Evaluation start...'
# 返回top N的推荐结果
N = self.n_rec_movie
# varables for precision and recall
# varables for precision and recall
# hit表示命中(测试集和推荐集相同+1)rec_count 每个用户的推荐数, test_count 每个用户对应的测试数据集的电影数
hit = 0
rec_count = 0
test_count = 0
@@ -143,14 +176,17 @@ class ItemBasedCF():
popular_sum = 0
for i, user in enumerate(self.trainset):
if i % 500 == 0:
if i > 0 and i % 500 == 0:
print >> sys.stderr, 'recommended for %d users' % i
test_movies = self.testset.get(user, {})
rec_movies = self.recommend(user)
# 对比测试集和推荐集的差异
for movie, w in rec_movies:
if movie in test_movies:
hit += 1
all_rec_movies.add(movie)
# 计算用户对应的电影出现次数log值的sum加和
popular_sum += math.log(1 + self.movie_popular[movie])
rec_count += N
test_count += len(test_movies)
@@ -160,13 +196,17 @@ class ItemBasedCF():
coverage = len(all_rec_movies) / (1.0 * self.movie_count)
popularity = popular_sum / (1.0 * rec_count)
print >> sys.stderr, 'precision=%.4f\trecall=%.4f\tcoverage=%.4f\tpopularity=%.4f' \
% (precision, recall, coverage, popularity)
print >> sys.stderr, 'precision=%.4f \t recall=%.4f \t coverage=%.4f \t popularity=%.4f' % (precision, recall, coverage, popularity)
if __name__ == '__main__':
ratingfile = 'input/16.RecommendedSystem/ml-1m/ratings.dat'
# 创建ItemCF对象
itemcf = ItemBasedCF()
itemcf.generate_dataset(ratingfile)
# 将数据按照 7:3的比例拆分成训练集和测试集存储在usercf的trainset和testset中
itemcf.generate_dataset(ratingfile, pivot=0.7)
# 计算用户之间的相似度
itemcf.calc_movie_sim()
# 评估推荐效果
itemcf.evaluate()

View File

@@ -102,6 +102,7 @@ class UserBasedCF():
if movie not in self.movie_popular:
self.movie_popular[movie] = 0
self.movie_popular[movie] += 1
print >> sys.stderr, 'build movie-users inverse table success'
# save the total movie number, which will be used in evaluation
@@ -109,7 +110,7 @@ class UserBasedCF():
print >> sys.stderr, 'total movie number = %d' % self.movie_count
usersim_mat = self.user_sim_mat
# 统计在相同电影时,用户同时出现的次数
# 统计在相同电影时,不同用户同时出现的次数
print >> sys.stderr, 'building user co-rated movies matrix...'
for movie, users in movie2users.iteritems():
@@ -138,8 +139,9 @@ class UserBasedCF():
print >> sys.stderr, 'calculate user similarity matrix(similarity factor) success'
print >> sys.stderr, 'Total similarity factor number = %d' % simfactor_count
# @profile
def recommend(self, user):
"""recommend(推荐top K的用户所看过的电影对电影进行相似度sum的排序取出top N的电影数)
"""recommend(找出top K的用户所看过的电影对电影进行相似度sum的排序取出top N的电影数)
Args:
user 用户
@@ -152,8 +154,9 @@ class UserBasedCF():
rank = dict()
watched_movies = self.trainset[user]
# 找出top 10的用户相似度
# v=similar user, wuv=similarity factor
# 计算top K 用户相似度
# v=similar user, wuv=不同用户同时出现的次数
# 耗时分析50.4%的时间在 line-160行
for v, wuv in sorted(self.user_sim_mat[user].items(), key=itemgetter(1), reverse=True)[0:K]:
for movie in self.trainset[v]:
if movie in watched_movies:
@@ -168,7 +171,7 @@ class UserBasedCF():
''' return precision, recall, coverage and popularity '''
print >> sys.stderr, 'Evaluation start...'
# 返回top 10的推荐结果
# 返回top N的推荐结果
N = self.n_rec_movie
# varables for precision and recall
# hit表示命中(测试集和推荐集相同+1)rec_count 每个用户的推荐数, test_count 每个用户对应的测试数据集的电影数
@@ -209,7 +212,7 @@ if __name__ == '__main__':
# 创建UserCF对象
usercf = UserBasedCF()
# 将数据按照 7:3的比例拆分成训练集和测试集存储在usercf的trainsettestset中
# 将数据按照 7:3的比例拆分成训练集和测试集存储在usercf的trainsettestset中
usercf.generate_dataset(ratingfile, pivot=0.7)
# 计算用户之间的相似度
usercf.calc_user_sim()