DEV: ADD CAHPTER 4 CODE FILE

This commit is contained in:
sheepmen
2017-03-25 14:03:24 +08:00
parent 5d8790a156
commit 6000e5f36c
2 changed files with 175 additions and 1 deletions

View File

@@ -10,7 +10,7 @@ Decision Tree Source Code for Machine Learning in Action Ch. 3
print(__doc__)
import operator
from math import log
import decisionTreePlot as dtPlot
import DecisionTreePlot as dtPlot
def createDataSet():
@@ -116,14 +116,24 @@ def chooseBestFeatureToSplit(dataSet):
# get a set of unique values
# 获取剔重后的集合
uniqueVals = set(featList)
print('uniqueVals:'+str(uniqueVals))
# 创建一个临时的信息熵
newEntropy = 0.0
# 遍历某一列的value集合计算该列的信息熵
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
print (subDataSet)
prob = len(subDataSet)/float(len(dataSet))
<<<<<<< Updated upstream
newEntropy += prob * calcShannonEnt(subDataSet)
# gain[信息增益]: 划分数据集前后的信息变化, 获取信息熵最大的值
=======
text = calcShannonEnt(subDataSet)
print('----------'+str(text))
newEntropy += prob * text
# gain[信息增益] 值越大,意味着该分类提供的信息量越大,该特征对分类的不确定程度越小
# 也就说: 列进行group分组后对应的类别越多信息量越大那么香农熵越小那么信息增益就越大所以gain越大
>>>>>>> Stashed changes
infoGain = baseEntropy - newEntropy
print 'infoGain=', infoGain, 'bestFeature=', i, baseEntropy, newEntropy
if (infoGain > bestInfoGain):

View File

@@ -0,0 +1,164 @@
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from numpy import *
def loadDataSet():
dataMat = []
labelMat = []
fr = open('testSet.txt')
for line in fr.readlines():
lineArr = line.strip().split()
dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
labelMat.append(int(lineArr[2]))
return dataMat, labelMat
def sigmoid(inX):
return 1.0 / (1 + exp(-inX))
def gradAscent(dataMatIn, classLabels):
# 转化为矩阵[[1,1,2],[1,1,2]....]
dataMatrix = mat(dataMatIn) # convert to NumPy matrix
# 转化为矩阵[[0,1,0,1,0,1.....]],并转制[[0],[1],[0].....]
x = mat(classLabels)
labelMat = x.transpose() # convert to NumPy matrix
# m->数据量 n->特征数
m, n = shape(dataMatrix)
# 步长
alpha = 0.001
# 迭代次数
maxCycles = 500
# 生成一个长度和特征数相同的矩阵此处n为3 -> [[1],[1],[1]]
weights = ones((n, 1))
for k in range(maxCycles): # heavy on matrix operations
# 1. dataMatrix * weights 矩阵乘法: [[1,1,2],[1,1,2]....] * [[1],[1],[1]] -> [[]]
s = dataMatrix * weights
# 把每个特征与系数的乘积只和带入Sigmoid函数
h = sigmoid(dataMatrix * weights) # matrix mult
# [[x,x,x,x,x,......一共一百个误差]]
error = (labelMat - h) # vector subtraction
# dataMatrix.transpose() * error 推理略去
# [[x,x,x,x....一共一百个数],[],[]]
data_tran = dataMatrix.transpose()
# [[a,b,c]]
data_tran_error = data_tran * error
# weights = weights + alpha * dataMatrix.transpose() * error # matrix mult
weights = weights + alpha * data_tran_error
return weights
# 随机梯度上升
# 梯度上升优化算法在每次更新数据集时都需要遍历整个数据集,计算复杂都较高
# 随机梯度上升一次只用一个样本点来更新回归系数
def stocGradAscent0(dataMatrix, classLabels):
m, n = shape(dataMatrix)
alpha = 0.01
weights = ones(n) # initialize to all ones
for i in range(m):
h = sigmoid(sum(dataMatrix[i] * weights))
error = classLabels[i] - h
weights = weights + alpha * error * dataMatrix[i]
return weights
def plotBestFit(weights):
import matplotlib.pyplot as plt
dataMat, labelMat = loadDataSet()
dataArr = array(dataMat)
n = shape(dataArr)[0]
xcord1 = [];
ycord1 = []
xcord2 = [];
ycord2 = []
for i in range(n):
if int(labelMat[i]) == 1:
xcord1.append(dataArr[i, 1]);
ycord1.append(dataArr[i, 2])
else:
xcord2.append(dataArr[i, 1]);
ycord2.append(dataArr[i, 2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
ax.scatter(xcord2, ycord2, s=30, c='green')
x = arange(-3.0, 3.0, 0.1)
y = (-weights[0] - weights[1] * x) / weights[2]
ax.plot(x, y)
plt.xlabel('X1');
plt.ylabel('X2');
plt.show()
def stocGradAscent1(dataMatrix, classLabels, numIter=150):
m, n = shape(dataMatrix)
weights = ones(n) # initialize to all ones
for j in range(numIter):
dataIndex = range(m)
for i in range(m):
# 步长在不断减小
alpha = 4 / (1.0 + j + i) + 0.0001 # apha decreases with iteration, does not
# 随机选取样本减少周期波动
randIndex = int(random.uniform(0, len(dataIndex))) # go to 0 because of the constant
h = sigmoid(sum(dataMatrix[randIndex] * weights))
error = classLabels[randIndex] - h
weights = weights + alpha * error * dataMatrix[randIndex]
del (dataIndex[randIndex])
return weights
# a, b = loadDataSet()
# weights = gradAscent(a, b)
# plotBestFit(weights)
#
######################################################################################################################
def classifyVector(inX, weights):
prob = sigmoid(sum(inX * weights))
if prob > 0.5:
return 1.0
else:
return 0.0
def colicTest():
frTrain = open('horseColicTraining.txt');
frTest = open('horseColicTest.txt')
trainingSet = [];
trainingLabels = []
for line in frTrain.readlines():
currLine = line.strip().split('\t')
lineArr = []
for i in range(21):
lineArr.append(float(currLine[i]))
trainingSet.append(lineArr)
trainingLabels.append(float(currLine[21]))
trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 1000)
errorCount = 0;
numTestVec = 0.0
for line in frTest.readlines():
numTestVec += 1.0
currLine = line.strip().split('\t')
lineArr = []
for i in range(21):
lineArr.append(float(currLine[i]))
if int(classifyVector(array(lineArr), trainWeights)) != int(currLine[21]):
errorCount += 1
errorRate = (float(errorCount) / numTestVec)
print "the error rate of this test is: %f" % errorRate
return errorRate
def multiTest():
numTests = 10;
errorSum = 0.0
for k in range(numTests):
errorSum += colicTest()
print "after %d iterations the average error rate is: %f" % (numTests, errorSum / float(numTests))
# multiTest()
colicTest()