mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-11 14:26:04 +08:00
更新完AdaBoost的测试代码和案例
This commit is contained in:
@@ -9,14 +9,31 @@ Adaboost is short for Adaptive Boosting
|
||||
from numpy import *
|
||||
|
||||
|
||||
def loadSimpData():
|
||||
""" 测试数据
|
||||
Returns:
|
||||
dataArr feature对应的数据集
|
||||
labelArr feature对应的分类标签
|
||||
"""
|
||||
dataArr = array([[1., 2.1], [2., 1.1], [1.3, 1.], [1., 1.], [2., 1.]])
|
||||
labelArr = [1.0, 1.0, -1.0, -1.0, 1.0]
|
||||
# def loadSimpData():
|
||||
# """ 测试数据
|
||||
# Returns:
|
||||
# dataArr feature对应的数据集
|
||||
# labelArr feature对应的分类标签
|
||||
# """
|
||||
# dataArr = array([[1., 2.1], [2., 1.1], [1.3, 1.], [1., 1.], [2., 1.]])
|
||||
# labelArr = [1.0, 1.0, -1.0, -1.0, 1.0]
|
||||
# return dataArr, labelArr
|
||||
|
||||
|
||||
# general function to parse tab -delimited floats
|
||||
def loadDataSet(fileName):
|
||||
# get number of fields
|
||||
numFeat = len(open(fileName).readline().split('\t'))
|
||||
dataArr = []
|
||||
labelArr = []
|
||||
fr = open(fileName)
|
||||
for line in fr.readlines():
|
||||
lineArr = []
|
||||
curLine = line.strip().split('\t')
|
||||
for i in range(numFeat-1):
|
||||
lineArr.append(float(curLine[i]))
|
||||
dataArr.append(lineArr)
|
||||
labelArr.append(float(curLine[-1]))
|
||||
return dataArr, labelArr
|
||||
|
||||
|
||||
@@ -117,11 +134,11 @@ def adaBoostTrainDS(dataArr, labelArr, numIt=40):
|
||||
# 结果发现: 正确的alpha的权重值变小了,错误的变大了。也就说D里面分类的权重值变了。(可以举例验证,假设:alpha=0.6,什么的)
|
||||
D = multiply(D, exp(expon))
|
||||
D = D/D.sum()
|
||||
print "D: ", D.T
|
||||
# print "D: ", D.T
|
||||
# 计算分类结果的值,在上一轮结果的基础上,进行加和操作
|
||||
# calc training error of all classifiers, if this is 0 quit for loop early (use break)
|
||||
aggClassEst += alpha*classEst
|
||||
print "aggClassEst: ", aggClassEst.T
|
||||
# print "aggClassEst: ", aggClassEst.T
|
||||
# sign 判断正为1, 0为0, 负为-1,通过最终加和的权重值,判断符号。
|
||||
# 结果为:错误的样本标签集合,因为是 !=,那么结果就是0 正, 1 负
|
||||
aggErrors = multiply(sign(aggClassEst) != mat(labelArr).T, ones((m, 1)))
|
||||
@@ -132,54 +149,27 @@ def adaBoostTrainDS(dataArr, labelArr, numIt=40):
|
||||
return weakClassArr, aggClassEst
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
dataArr, labelArr = loadSimpData()
|
||||
print '-----\n', dataArr, '\n', labelArr
|
||||
def adaClassify(datToClass, classifierArr):
|
||||
# do stuff similar to last aggClassEst in adaBoostTrainDS
|
||||
dataMat = mat(datToClass)
|
||||
m = shape(dataMat)[0]
|
||||
aggClassEst = mat(zeros((m, 1)))
|
||||
|
||||
# D表示最初,对1进行均分为5份,平均每一个初始的概率都为0.2
|
||||
D = mat(ones((5, 1))/5)
|
||||
# print '-----', D
|
||||
|
||||
# print buildStump(dataArr, labelArr, D)
|
||||
weakClassArr, aggClassEst = adaBoostTrainDS(dataArr, labelArr, 9)
|
||||
print weakClassArr
|
||||
|
||||
|
||||
|
||||
|
||||
def loadDataSet(fileName): #general function to parse tab -delimited floats
|
||||
numFeat = len(open(fileName).readline().split('\t')) #get number of fields
|
||||
dataArr = []
|
||||
labelArr = []
|
||||
fr = open(fileName)
|
||||
for line in fr.readlines():
|
||||
lineArr = []
|
||||
curLine = line.strip().split('\t')
|
||||
for i in range(numFeat-1):
|
||||
lineArr.append(float(curLine[i]))
|
||||
dataArr.append(lineArr)
|
||||
labelArr.append(float(curLine[-1]))
|
||||
return dataArr, labelArr
|
||||
|
||||
|
||||
|
||||
|
||||
def adaClassify(datToClass,classifierArr):
|
||||
dataMatrix = mat(datToClass)#do stuff similar to last aggClassEst in adaBoostTrainDS
|
||||
m = shape(dataMatrix)[0]
|
||||
aggClassEst = mat(zeros((m,1)))
|
||||
# 循环 多个分类器
|
||||
for i in range(len(classifierArr)):
|
||||
classEst = stumpClassify(dataMatrix,classifierArr[i]['dim'],\
|
||||
classifierArr[i]['thresh'],\
|
||||
classifierArr[i]['ineq'])#call stump classify
|
||||
# 通过分类器来核算每一次的分类结果,然后通过alpha*每一次的结果 得到最后的权重加和的值。
|
||||
classEst = stumpClassify(dataMat, classifierArr[i]['dim'], classifierArr[i]['thresh'], classifierArr[i]['ineq'])
|
||||
aggClassEst += classifierArr[i]['alpha']*classEst
|
||||
print aggClassEst
|
||||
# print aggClassEst
|
||||
return sign(aggClassEst)
|
||||
|
||||
|
||||
def plotROC(predStrengths, classLabels):
|
||||
import matplotlib.pyplot as plt
|
||||
cur = (1.0,1.0) #cursor
|
||||
ySum = 0.0 #variable to calculate AUC
|
||||
# cursor
|
||||
cur = (1.0, 1.0)
|
||||
# variable to calculate AUC
|
||||
ySum = 0.0
|
||||
numPosClas = sum(array(classLabels)==1.0)
|
||||
yStep = 1/float(numPosClas); xStep = 1/float(len(classLabels)-numPosClas)
|
||||
sortedIndicies = predStrengths.argsort()#get sorted index, it's reverse
|
||||
@@ -189,9 +179,11 @@ def plotROC(predStrengths, classLabels):
|
||||
#loop through all the values, drawing a line segment at each point
|
||||
for index in sortedIndicies.tolist()[0]:
|
||||
if classLabels[index] == 1.0:
|
||||
delX = 0; delY = yStep;
|
||||
delX = 0
|
||||
delY = yStep
|
||||
else:
|
||||
delX = xStep; delY = 0;
|
||||
delX = xStep
|
||||
delY = 0
|
||||
ySum += cur[1]
|
||||
#draw line from cur to (cur[0]-delX,cur[1]-delY)
|
||||
ax.plot([cur[0],cur[0]-delX],[cur[1],cur[1]-delY], c='b')
|
||||
@@ -202,3 +194,40 @@ def plotROC(predStrengths, classLabels):
|
||||
ax.axis([0,1,0,1])
|
||||
plt.show()
|
||||
print "the Area Under the Curve is: ",ySum*xStep
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# dataArr, labelArr = loadSimpData()
|
||||
# print '-----\n', dataArr, '\n', labelArr
|
||||
|
||||
# # D表示最初,对1进行均分为5份,平均每一个初始的概率都为0.2
|
||||
# D = mat(ones((5, 1))/5)
|
||||
# # print '-----', D
|
||||
|
||||
# # print buildStump(dataArr, labelArr, D)
|
||||
|
||||
# # 分类器:weakClassArr
|
||||
# # 历史累计的分类结果集
|
||||
# weakClassArr, aggClassEst = adaBoostTrainDS(dataArr, labelArr, 9)
|
||||
# print weakClassArr, '\n-----\n', aggClassEst.T
|
||||
|
||||
# # 测试数据的分类结果
|
||||
# print adaClassify([0, 0], weakClassArr)
|
||||
# print adaClassify([[5, 5], [0, 0]], weakClassArr)
|
||||
|
||||
|
||||
# 马疝病数据集
|
||||
# 训练集合
|
||||
dataArr, labelArr = loadDataSet("testData/AB_horseColicTraining2.txt")
|
||||
weakClassArr, aggClassEst = adaBoostTrainDS(dataArr, labelArr, 50)
|
||||
|
||||
# 测试集合
|
||||
dataArrTest, labelArrTest = loadDataSet("testData/AB_horseColicTest2.txt")
|
||||
m = shape(dataArrTest)[0]
|
||||
predicting10 = adaClassify(dataArrTest, weakClassArr)
|
||||
errArr = mat(ones((m, 1)))
|
||||
# 测试:计算总样本数,错误样本数,错误率
|
||||
print m, errArr[predicting10 != mat(labelArrTest).T].sum(), errArr[predicting10 != mat(labelArrTest).T].sum()/m
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user