修改4.NaiveBayes的 朴素贝叶斯.md 文件和 bayes.py

This commit is contained in:
chenyyx
2017-08-31 13:14:33 +08:00
parent f3468034c4
commit 7281bc3fc0
2 changed files with 399 additions and 46 deletions

View File

@@ -11,7 +11,7 @@ from numpy import *
p(xy)=p(x|y)p(y)=p(y|x)p(x)
p(x|y)=p(y|x)p(x)/p(y)
"""
# 项目案例1: 屏蔽社区留言板的侮辱性言论
def loadDataSet():
"""
@@ -21,7 +21,7 @@ def loadDataSet():
postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], #[0,0,1,1,1......]
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['stop', 'posting', 'stupid', 'worthless', 'gar e'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0, 1, 0, 1, 0, 1] # 1 is abusive, 0 not
@@ -154,7 +154,7 @@ def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
# 计算公式 log(P(F1|C))+log(P(F2|C))+....+log(P(Fn|C))+log(P(C))
# 使用 NumPy 数组来计算两个向量相乘的结果这里的相乘是指对应元素相乘即先将两个向量中的第一个元素相乘然后将第2个元素相乘以此类推。
# 我的理解是:这里的 vec2Classify * p1Vec 的意思就是将每个词与其对应的概率相关联起来
# 可以理解为 1.单词在词汇表中的条件下文件是good 类别的概率 也可以理解为 2.在整个空间下文件既在词汇表中又是good类别的概率
# 可以理解为 1.单词在词汇表中的条件下文件是good 类别的概率 也可以理解为 2.在整个空间下文件既在词汇表中又是good类别的概率
p1 = sum(vec2Classify * p1Vec) + log(pClass1)
p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
if p1 > p0:
@@ -195,5 +195,137 @@ def testingNB():
print testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb)
# ------------------------------------------------------------------------------------------
# 项目案例2: 使用朴素贝叶斯过滤垃圾邮件
# 切分文本
def textParse(bigString):
import re
# 使用正则表达式来切分句子,其中分隔符是除单词、数字外的任意字符串
listOfTokens = re.split(r'\W*', bigString)
return [tok.lower() for tok in listOfTokens if len(tok) > 2]
def spamTest():
docList = []
classList = []
fullText = []
for i in range(1, 26):
wordList = textParse(open('input/4.NaiveBayes/email/spam/%d.txt' % i).read())
docList.append(wordList)
classList.append(1)
wordList = textParse(open('input/4.NaiveBayes/email/ham/%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
# 创建词汇表
vocabList = createVocabList(docList)
trainingSet = range(50)
testSet = []
# 随机取 10 个邮件用来测试
for i in range(10):
# random.uniform(x, y) 随机生成一个范围为 x - y 的实数
randIndex = int(random.uniform(0, len(trainingSet)))
testSet.append(trainingSet[randIndex])
del(trainingSet[randIndex])
trainMat = []
trainClasses = []
for docIndex in trainingSet:
trainMat.append(setOfWords2Vec(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V, p1V, pSpam = trainNB0(array(trainMat), array(trainClasses))
errorCount = 0
for docIndex in testSet:
wordVector = setOfWords2Vec(vocabList, docList[docIndex])
if classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
errorCount += 1
print 'the errorCount is: ', errorCount
print 'the testSet length is :', len(testSet)
print 'the error rate is :', float(errorCount)/len(testSet)
def testParseTest():
print textParse(open('input/4.NaiveBayes/email/ham/1.txt').read())
# -----------------------------------------------------------------------------------
# 项目案例3: 使用朴素贝叶斯从个人广告中获取区域倾向
# 将文本文件解析成 词条向量
def setOfWords2VecMN(vocabList,inputSet):
returnVec=[0]*len(vocabList) #创建一个其中所含元素都为0的向量
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)]+=1
return returnVec
#文件解析
def textParse(bigString):
import re
listOfTokens=re.split(r'\W*',bigString)
return [tok.lower() for tok in listOfTokens if len(tok)>2]
#RSS源分类器及高频词去除函数
def calcMostFreq(vocabList,fullText):
import operator
freqDict={}
for token in vocabList: #遍历词汇表中的每个词
freqDict[token]=fullText.count(token) #统计每个词在文本中出现的次数
sortedFreq=sorted(freqDict.iteritems(),key=operator.itemgetter(1),reverse=True) #根据每个词出现的次数从高到底对字典进行排序
return sortedFreq[:30] #返回出现次数最高的30个单词
def localWords(feed1,feed0):
import feedparser
docList=[];classList=[];fullText=[]
minLen=min(len(feed1['entries']),len(feed0['entries']))
for i in range(minLen):
wordList=textParse(feed1['entries'][i]['summary']) #每次访问一条RSS源
docList.append(wordList)
fullText.extend(wordList)
classList.append(1)
wordList=textParse(feed0['entries'][i]['summary'])
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList=createVocabList(docList)
top30Words=calcMostFreq(vocabList,fullText)
for pairW in top30Words:
if pairW[0] in vocabList:vocabList.remove(pairW[0]) #去掉出现次数最高的那些词
trainingSet=range(2*minLen);testSet=[]
for i in range(20):
randIndex=int(random.uniform(0,len(trainingSet)))
testSet.append(trainingSet[randIndex])
del(trainingSet[randIndex])
trainMat=[];trainClasses=[]
for docIndex in trainingSet:
trainMat.append(bagOfWords2VecMN(vocabList,docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V,p1V,pSpam=trainNBO(array(trainMat),array(trainClasses))
errorCount=0
for docIndex in testSet:
wordVector=bagOfWords2VecMN(vocabList,docList[docIndex])
if classifyNB(array(wordVector),p0V,p1V,pSpam)!=classList[docIndex]:
errorCount+=1
print 'the error rate is:',float(errorCount)/len(testSet)
return vocabList,p0V,p1V
# 最具表征性的词汇显示函数
def getTopWords(ny,sf):
import operator
vocabList,p0V,p1V=localWords(ny,sf)
topNY=[];topSF=[]
for i in range(len(p0V)):
if p0V[i]>-6.0:topSF.append((vocabList[i],p0V[i]))
if p1V[i]>-6.0:topNY.append((vocabList[i],p1V[i]))
sortedSF=sorted(topSF,key=lambda pair:pair[1],reverse=True)
print "SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**"
for item in sortedSF:
print item[0]
sortedNY=sorted(topNY,key=lambda pair:pair[1],reverse=True)
print "NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**"
for item in sortedNY:
print item[0]
if __name__ == "__main__":
testingNB()
# testingNB()
spamTest()
# laTest()