mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-11 14:26:04 +08:00
PF-growth项目案例测试完成
This commit is contained in:
@@ -24,7 +24,6 @@ class treeNode:
|
||||
|
||||
def inc(self, numOccur):
|
||||
"""inc(对count变量增加给定值)
|
||||
|
||||
"""
|
||||
self.count += numOccur
|
||||
|
||||
@@ -56,16 +55,16 @@ def createInitSet(dataSet):
|
||||
|
||||
# this version does not use recursion
|
||||
def updateHeader(nodeToTest, targetNode):
|
||||
"""updateHeader(更新头指针,添加targetNode到nodeToTest的nodeLink上面)
|
||||
"""updateHeader(更新头指针,建立相同元素之间的关系,例如: 左边的r指向右边的r值,就是后出现的相同元素 指向 已经出现的元素)
|
||||
|
||||
从头指针的nodeLink开始,一直沿着nodeLink直到到达链表末尾。这就是链表。
|
||||
性能:如果链表很长可能会遇到迭代调用的次数限制。
|
||||
|
||||
Args:
|
||||
nodeToTest 头节点
|
||||
targetNode 目标节点
|
||||
nodeToTest 满足minSup {所有的元素+(value, treeNode)}
|
||||
targetNode Tree对象的子节点
|
||||
"""
|
||||
# Do not use recursion to traverse a linked list!
|
||||
# 建立相同元素之间的关系,例如: 左边的r指向右边的r值
|
||||
while (nodeToTest.nodeLink is not None):
|
||||
nodeToTest = nodeToTest.nodeLink
|
||||
nodeToTest.nodeLink = targetNode
|
||||
@@ -74,15 +73,19 @@ def updateHeader(nodeToTest, targetNode):
|
||||
def updateTree(items, inTree, headerTable, count):
|
||||
"""updateTree(更新FP-tree,第二次遍历)
|
||||
|
||||
# 针对每一行的数据
|
||||
# 最大的key, 添加
|
||||
Args:
|
||||
items 满足minSup 排序后的元素数组(大到小的排序)
|
||||
inTree 空的Tree对象
|
||||
headerTable 满足minSup {所有的元素+(value, treeNode)}
|
||||
count 原数据集中每一组Kay出现的次数
|
||||
items 满足minSup 排序后的元素key的数组(大到小的排序)
|
||||
inTree 空的Tree对象
|
||||
headerTable 满足minSup {所有的元素+(value, treeNode)}
|
||||
count 原数据集中每一组Kay出现的次数
|
||||
"""
|
||||
# 判断满足minSup排序后的第一个元素,是否是inTree的子节点
|
||||
# 取出 元素 出现次数最高的
|
||||
# 如果该元素在 inTree.children 这个字典中,就进行累加
|
||||
# 如果该元素不存在 就 inTree.children 字典中新增key,value为初始化的 treeNode 对象
|
||||
if items[0] in inTree.children:
|
||||
# 如果是,那么这个子节点的key元素添加count次
|
||||
# 更新 最大元素,对应的 treeNode 对象的count进行叠加
|
||||
inTree.children[items[0]].inc(count)
|
||||
else:
|
||||
# 如果不存在子节点,我们为该inTree添加子节点
|
||||
@@ -90,11 +93,13 @@ def updateTree(items, inTree, headerTable, count):
|
||||
# 如果满足minSup的dist字典的value值第二位为null, 我们就设置该元素为 本节点对应的tree节点
|
||||
# 如果元素第二位不为null,我们就更新header节点
|
||||
if headerTable[items[0]][1] is None:
|
||||
# headerTable只记录第一次节点出现的位置
|
||||
headerTable[items[0]][1] = inTree.children[items[0]]
|
||||
else:
|
||||
# 本质上是修改headerTable的key对应的Tree,的nodeLink值
|
||||
updateHeader(headerTable[items[0]][1], inTree.children[items[0]])
|
||||
if len(items) > 1:
|
||||
# print 'items[1::]=', items[1::]
|
||||
# 递归的调用,在items[0]的基础上,添加item0[1]做子节点, count只要循环的进行累计加和而已,统计出节点的最后的统计值。
|
||||
updateTree(items[1::], inTree.children[items[0]], headerTable, count)
|
||||
|
||||
|
||||
@@ -102,115 +107,135 @@ def createTree(dataSet, minSup=1):
|
||||
"""createTree(生成FP-tree,第一次遍历)
|
||||
|
||||
Args:
|
||||
dataSet dist字典对象
|
||||
dataSet dist{行:出现次数}的样本数据
|
||||
minSup 最小的支持度
|
||||
Returns:
|
||||
retTree FP-tree
|
||||
headerTable 满足minSup {所有的元素+(value, treeNode)}
|
||||
"""
|
||||
# 创建一个满足支持度>=minSup的dist字典
|
||||
# 支持度>=minSup的dist{所有元素:出现的次数}
|
||||
headerTable = {}
|
||||
# 循环得到dist字典所有的key
|
||||
# 循环 dist{行:出现次数}的样本数据
|
||||
for trans in dataSet:
|
||||
# 对所有的key进行循环,得到key里面的所有元素
|
||||
# 对所有的行进行循环,得到行里面的所有元素
|
||||
# 统计每一行中,每个元素出现的总次数
|
||||
for item in trans:
|
||||
# 存储每个元素和它对应的次数: 本身+dataSet该元素出现的次数
|
||||
# 例如: {'ababa': 3} count(a)=3+3+3=9 count(b)=3+3=6
|
||||
headerTable[item] = headerTable.get(item, 0) + dataSet[trans]
|
||||
# 循环所有元素出现的次数,然后remove到小于minSup的元素
|
||||
# 删除 headerTable中,元素次数<最小支持度的元素
|
||||
for k in headerTable.keys():
|
||||
if headerTable[k] < minSup:
|
||||
del(headerTable[k])
|
||||
|
||||
# 求出满足minSup元素的集合
|
||||
# 满足minSup: set(各元素集合)
|
||||
freqItemSet = set(headerTable.keys())
|
||||
# 如果不存在满足minSup的元素就直接返回None
|
||||
# 如果不存在,直接返回None
|
||||
if len(freqItemSet) == 0:
|
||||
return None, None
|
||||
for k in headerTable:
|
||||
# reformat headerTable to use Node link
|
||||
# value值为一个元组
|
||||
# 格式化: dist{元素key: [元素次数, None]}
|
||||
headerTable[k] = [headerTable[k], None]
|
||||
|
||||
# create tree
|
||||
retTree = treeNode('Null Set', 1, None)
|
||||
# 循环 dist{行:出现次数}的样本数据
|
||||
for tranSet, count in dataSet.items():
|
||||
# print 'tranSet, count=', tranSet, count
|
||||
# localD = dist{元素key: 元素次数}
|
||||
localD = {}
|
||||
for item in tranSet:
|
||||
# 判断是否在满足minSup的集合中
|
||||
if item in freqItemSet:
|
||||
# print 'headerTable[item][0]=', headerTable[item][0], headerTable[item]
|
||||
localD[item] = headerTable[item][0]
|
||||
# print 'localD=', localD
|
||||
if len(localD) > 0:
|
||||
# p=key,value; 所以是通过value值的大小,进行从大到小进行排序
|
||||
# orderedItems表示取出元组的key值,也就是字母本身,但是字母本身是存在顺序的
|
||||
# orderedItems 表示取出元组的key值,也就是字母本身,但是字母本身是大到小的顺序
|
||||
orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: p[1], reverse=True)]
|
||||
# print 'sorted(localD.items(), key=lambda p: p[1], reverse=True)]=', sorted(localD.items(), key=lambda p: p[1], reverse=True)
|
||||
# print 'orderedItems=', orderedItems
|
||||
|
||||
# 使用有序freq项集来填充树
|
||||
# print 'orderedItems=', orderedItems, 'headerTable', headerTable, '\n\n\n'
|
||||
# 填充树,通过有序的orderedItems的第一位,进行顺序填充 第一层的子节点。
|
||||
updateTree(orderedItems, retTree, headerTable, count)
|
||||
|
||||
return retTree, headerTable
|
||||
|
||||
|
||||
def ascendTree(leafNode, prefixPath): #ascends from leaf node to root
|
||||
def ascendTree(leafNode, prefixPath):
|
||||
"""ascendTree(如果存在父节点,就记录当前节点的name值)
|
||||
|
||||
Args:
|
||||
leafNode 查询的节点对于的nodeTree
|
||||
prefixPath 要查询的节点值
|
||||
"""
|
||||
if leafNode.parent is not None:
|
||||
prefixPath.append(leafNode.name)
|
||||
ascendTree(leafNode.parent, prefixPath)
|
||||
|
||||
|
||||
def findPrefixPath(basePat, treeNode): #treeNode comes from header table
|
||||
def findPrefixPath(basePat, treeNode):
|
||||
"""findPrefixPath 基础数据集
|
||||
|
||||
Args:
|
||||
basePat 要查询的节点值
|
||||
treeNode 查询的节点所在的当前nodeTree
|
||||
Returns:
|
||||
condPats 对非basePat的倒叙值作为key,赋值为count数
|
||||
"""
|
||||
condPats = {}
|
||||
# 对 treeNode的link进行循环
|
||||
while treeNode is not None:
|
||||
prefixPath = []
|
||||
# 寻找改节点的父节点,相当于找到了该节点的频繁项集
|
||||
ascendTree(treeNode, prefixPath)
|
||||
if len(prefixPath) > 1:
|
||||
# 避免 单独`Z`一个元素,添加了空节点
|
||||
if len(prefixPath) > 1:
|
||||
# 对非basePat的倒叙值作为key,赋值为count数
|
||||
# prefixPath[1:] 变frozenset后,字母就变无须了
|
||||
# condPats[frozenset(prefixPath)] = treeNode.count
|
||||
condPats[frozenset(prefixPath[1:])] = treeNode.count
|
||||
# 递归,寻找改节点的上一个 相同值的链接节点
|
||||
treeNode = treeNode.nodeLink
|
||||
# print treeNode
|
||||
return condPats
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
rootNode = treeNode('pyramid', 9, None)
|
||||
rootNode.children['eye'] = treeNode('eye', 13, None)
|
||||
rootNode.children['phoenix'] = treeNode('phoenix', 3, None)
|
||||
# 将树以文本形式显示
|
||||
# print rootNode.disp()
|
||||
|
||||
# load样本数据
|
||||
simpDat = loadSimpDat()
|
||||
# print simpDat, '\n'
|
||||
# 重新装载 frozen set 格式化样本数据,用dist存储数据和对应的次数
|
||||
initSet = createInitSet(simpDat)
|
||||
# print initSet
|
||||
|
||||
# 创建FP树
|
||||
myFPtree, myHeaderTab = createTree(initSet, 3)
|
||||
myFPtree.disp()
|
||||
# print myHeaderTab
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def mineTree(inTree, headerTable, minSup, preFix, freqItemList):
|
||||
bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p: p[1])]#(sort header table)
|
||||
for basePat in bigL: #start from bottom of header table
|
||||
"""mineTree(创建条件FP树)
|
||||
|
||||
Args:
|
||||
inTree myFPtree
|
||||
headerTable 满足minSup {所有的元素+(value, treeNode)}
|
||||
minSup 最小支持项集
|
||||
preFix preFix为newFreqSet上一次的存储记录,一旦没有myHead,就不会更新
|
||||
freqItemList 用来存储频繁子项的列表
|
||||
"""
|
||||
# 通过value进行从小到大的排序, 得到频繁项集的key
|
||||
# 最小支持项集的key的list集合
|
||||
bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p: p[1])]
|
||||
# print '-----', sorted(headerTable.items(), key=lambda p: p[1])
|
||||
print 'bigL=', bigL
|
||||
# 循环遍历 最频繁项集的key,从小到大的递归寻找对应的频繁项集
|
||||
for basePat in bigL:
|
||||
# preFix为newFreqSet上一次的存储记录,一旦没有myHead,就不会更新
|
||||
newFreqSet = preFix.copy()
|
||||
newFreqSet.add(basePat)
|
||||
#print 'finalFrequent Item: ',newFreqSet #append to set
|
||||
print 'newFreqSet=', newFreqSet, preFix
|
||||
|
||||
freqItemList.append(newFreqSet)
|
||||
print 'freqItemList=', freqItemList
|
||||
condPattBases = findPrefixPath(basePat, headerTable[basePat][1])
|
||||
#print 'condPattBases :',basePat, condPattBases
|
||||
#2. construct cond FP-tree from cond. pattern base
|
||||
print 'condPattBases=', basePat, condPattBases
|
||||
|
||||
# 构建FP-tree
|
||||
myCondTree, myHead = createTree(condPattBases, minSup)
|
||||
#print 'head from conditional tree: ', myHead
|
||||
if myHead != None: #3. mine cond. FP-tree
|
||||
#print 'conditional tree for: ',newFreqSet
|
||||
#myCondTree.disp(1)
|
||||
print 'myHead=', myHead
|
||||
# 挖掘条件 FP-tree, 如果
|
||||
if myHead is not None:
|
||||
myCondTree.disp(1)
|
||||
print '\n\n\n'
|
||||
# 递归 myHead 找出频繁项集
|
||||
mineTree(myCondTree, myHead, minSup, newFreqSet, freqItemList)
|
||||
|
||||
|
||||
print '\n\n\n'
|
||||
|
||||
|
||||
import twitter
|
||||
@@ -218,23 +243,19 @@ from time import sleep
|
||||
import re
|
||||
|
||||
|
||||
def textParse(bigString):
|
||||
urlsRemoved = re.sub('(http:[/][/]|www.)([a-z]|[A-Z]|[0-9]|[/.]|[~])*', '', bigString)
|
||||
listOfTokens = re.split(r'\W*', urlsRemoved)
|
||||
return [tok.lower() for tok in listOfTokens if len(tok) > 2]
|
||||
|
||||
|
||||
def getLotsOfTweets(searchStr):
|
||||
"""
|
||||
获取 100个搜索结果页面
|
||||
"""
|
||||
CONSUMER_KEY = ''
|
||||
CONSUMER_SECRET = ''
|
||||
ACCESS_TOKEN_KEY = ''
|
||||
ACCESS_TOKEN_SECRET = ''
|
||||
api = twitter.Api(consumer_key=CONSUMER_KEY, consumer_secret=CONSUMER_SECRET,
|
||||
access_token_key=ACCESS_TOKEN_KEY,
|
||||
access_token_secret=ACCESS_TOKEN_SECRET)
|
||||
#you can get 1500 results 15 pages * 100 per page
|
||||
api = twitter.Api(consumer_key=CONSUMER_KEY, consumer_secret=CONSUMER_SECRET, access_token_key=ACCESS_TOKEN_KEY, access_token_secret=ACCESS_TOKEN_SECRET)
|
||||
|
||||
# you can get 1500 results 15 pages * 100 per page
|
||||
resultsPages = []
|
||||
for i in range(1,15):
|
||||
for i in range(1, 15):
|
||||
print "fetching page %d" % i
|
||||
searchResults = api.GetSearch(searchStr, per_page=100, page=i)
|
||||
resultsPages.append(searchResults)
|
||||
@@ -242,7 +263,19 @@ def getLotsOfTweets(searchStr):
|
||||
return resultsPages
|
||||
|
||||
|
||||
def textParse(bigString):
|
||||
"""
|
||||
解析页面内容
|
||||
"""
|
||||
urlsRemoved = re.sub('(http:[/][/]|www.)([a-z]|[A-Z]|[0-9]|[/.]|[~])*', '', bigString)
|
||||
listOfTokens = re.split(r'\W*', urlsRemoved)
|
||||
return [tok.lower() for tok in listOfTokens if len(tok) > 2]
|
||||
|
||||
|
||||
def mineTweets(tweetArr, minSup=5):
|
||||
"""
|
||||
获取频繁项集
|
||||
"""
|
||||
parsedList = []
|
||||
for i in range(14):
|
||||
for j in range(100):
|
||||
@@ -254,10 +287,51 @@ def mineTweets(tweetArr, minSup=5):
|
||||
return myFreqList
|
||||
|
||||
|
||||
#minSup = 3
|
||||
#simpDat = loadSimpDat()
|
||||
#initSet = createInitSet(simpDat)
|
||||
#myFPtree, myHeaderTab = createTree(initSet, minSup)
|
||||
#myFPtree.disp()
|
||||
#myFreqList = []
|
||||
#mineTree(myFPtree, myHeaderTab, minSup, set([]), myFreqList)
|
||||
if __name__ == "__main__":
|
||||
# rootNode = treeNode('pyramid', 9, None)
|
||||
# rootNode.children['eye'] = treeNode('eye', 13, None)
|
||||
# rootNode.children['phoenix'] = treeNode('phoenix', 3, None)
|
||||
# # 将树以文本形式显示
|
||||
# # print rootNode.disp()
|
||||
|
||||
# # load样本数据
|
||||
# simpDat = loadSimpDat()
|
||||
# # print simpDat, '\n'
|
||||
# # frozen set 格式化 并 重新装载 样本数据,对所有的行进行统计求和,格式: {行:出现次数}
|
||||
# initSet = createInitSet(simpDat)
|
||||
# # print initSet
|
||||
|
||||
# # 创建FP树
|
||||
# # 输入:dist{行:出现次数}的样本数据 和 最小的支持度
|
||||
# # 输出:最终的PF-tree,通过循环获取第一层的节点,然后每一层的节点进行递归的获取每一行的字节点,也就是分支。然后所谓的指针,就是后来的指向已存在的
|
||||
# myFPtree, myHeaderTab = createTree(initSet, 3)
|
||||
# myFPtree.disp()
|
||||
|
||||
# # 抽取条件模式基
|
||||
# # 查询树节点的,频繁子项
|
||||
# # print findPrefixPath('x', myHeaderTab['x'][1])
|
||||
# # print findPrefixPath('z', myHeaderTab['z'][1])
|
||||
# # print findPrefixPath('r', myHeaderTab['r'][1])
|
||||
|
||||
# # 创建条件模式基
|
||||
# freqItemList = []
|
||||
# mineTree(myFPtree, myHeaderTab, 3, set([]), freqItemList)
|
||||
# print freqItemList
|
||||
|
||||
# # 项目实战
|
||||
# # 1.twitter项目案例
|
||||
# # 无法运行,因为没发链接twitter
|
||||
# lotsOtweets = getLotsOfTweets('RIMM')
|
||||
# listOfTerms = mineTweets(lotsOtweets, 20)
|
||||
# print len(listOfTerms)
|
||||
# for t in listOfTerms:
|
||||
# print t
|
||||
|
||||
# 2.新闻网站点击流中挖掘
|
||||
parsedDat = [line.split() for line in open('testData/FPGrowth_kosarak.dat').readlines()]
|
||||
initSet = createInitSet(parsedDat)
|
||||
myFPtree, myHeaderTab = createTree(initSet, 100000)
|
||||
|
||||
myFreList = []
|
||||
mineTree(myFPtree, myHeaderTab, 100000, set([]), myFreList)
|
||||
print myFreList
|
||||
|
||||
Reference in New Issue
Block a user