格式数学公式

This commit is contained in:
jiangzhonglian
2017-02-27 16:33:37 +08:00
parent 186f4dbaba
commit 7da5afed05
3 changed files with 196 additions and 0 deletions

View File

@@ -0,0 +1,172 @@
#!/usr/bin/python
# coding:utf8
'''
Created on Oct 12, 2010
Update on 2017-02-27
Decision Tree Source Code for Machine Learning in Action Ch. 3
@author: Peter Harrington/jiangzhonglian
'''
from math import log
import operator
def createDataSet():
"""DateSet 基础数据集
Args:
无需传入参数
Returns:
返回数据集和对应的label标签
Raises:
"""
dataSet = [[1, 1, 'yes'],
[1, 1, 'yes'],
[1, 0, 'no'],
[0, 1, 'no'],
[0, 1, 'no']]
labels = ['no surfacing', 'flippers']
# change to discrete values
return dataSet, labels
def calcShannonEnt(dataSet):
"""calcShannonEnt(calculate Shannon entropy 计算香农熵)
Args:
dataSet 数据集
Returns:
返回香农熵的计算值
Raises:
"""
# 求list的长度表示计算参与训练的数据量
numEntries = len(dataSet)
# print type(dataSet), 'numEntries: ', numEntries
# 计算分类标签label出现的次数
labelCounts = {}
# the the number of unique elements and their occurance
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
# print '-----', featVec, labelCounts
# 对于label标签的占比求出label标签的香农熵
shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key])/numEntries
# log base 2
shannonEnt -= prob * log(prob, 2)
print '---', prob, prob * log(prob, 2), shannonEnt
return shannonEnt
def splitDataSet(dataSet, axis, value):
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value:
# chop out axis used for splitting
reducedFeatVec = featVec[:axis]
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet
def chooseBestFeatureToSplit(dataSet):
# the last column is used for the labels
numFeatures = len(dataSet[0]) - 1
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeature = -1
# iterate over all the features
for i in range(numFeatures):
# create a list of all the examples of this feature
featList = [example[i] for example in dataSet]
# get a set of unique values
uniqueVals = set(featList)
newEntropy = 0.0
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy #calculate the info gain; ie reduction in entropy
if (infoGain > bestInfoGain): #compare this to the best gain so far
bestInfoGain = infoGain #if better than current best, set to best
bestFeature = i
return bestFeature #returns an integer
def majorityCnt(classList):
classCount = {}
for vote in classList:
if vote not in classCount.keys():
classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
def createTree(dataSet, labels):
classList = [example[-1] for example in dataSet]
if classList.count(classList[0]) == len(classList):
return classList[0]#stop splitting when all of the classes are equal
if len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSet
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel:{}}
# 注labels列表是可变对象在PYTHON函数中作为参数时传址引用能够被全局修改
# 所以这行代码导致函数外的同名变量被删除了元素,造成例句无法执行,提示'no surfacing' is not in list
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:] #copy all of labels, so trees don't mess up existing labels
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
return myTree
def classify(inputTree, featLabels, testVec):
# 获取tree的第一个节点值
print '1111', inputTree.keys()
firstStr = inputTree.keys()[0]
secondDict = inputTree[firstStr]
featIndex = featLabels.index(firstStr)
key = testVec[featIndex]
valueOfFeat = secondDict[key]
if isinstance(valueOfFeat, dict):
classLabel = classify(valueOfFeat, featLabels, testVec)
else:
classLabel = valueOfFeat
return classLabel
def storeTree(inputTree,filename):
import pickle
fw = open(filename, 'w')
pickle.dump(inputTree, fw)
fw.close()
def grabTree(filename):
import pickle
fr = open(filename)
return pickle.load(fr)
if __name__ == "__main__":
# 1.创建数据和结果标签
myDat, labels = createDataSet()
print myDat, labels
calcShannonEnt(myDat)
# import copy
# myTree = createTree(myDat, copy.deepcopy(labels))
# print myTree
# print classify(myTree, labels, [1, 1])