mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-11 14:26:04 +08:00
svmMLiA finish
This commit is contained in:
@@ -115,4 +115,358 @@ def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
|
||||
if (alphaPairsChanged == 0): iter += 1
|
||||
else: iter = 0
|
||||
print("iteration number: %d" % iter)
|
||||
return b,alphas
|
||||
return b,alphas
|
||||
|
||||
|
||||
def kernelTrans(X, A, kTup): # calc the kernel or transform data to a higher dimensional space
|
||||
m, n = shape(X)
|
||||
K = mat(zeros((m, 1)))
|
||||
if kTup[0] == 'lin':
|
||||
K = X * A.T # linear kernel
|
||||
elif kTup[0] == 'rbf':
|
||||
for j in range(m):
|
||||
deltaRow = X[j, :] - A
|
||||
K[j] = deltaRow * deltaRow.T
|
||||
K = exp(K / (-1 * kTup[1] ** 2)) # divide in NumPy is element-wise not matrix like Matlab
|
||||
else:
|
||||
raise NameError('Houston We Have a Problem -- \
|
||||
That Kernel is not recognized')
|
||||
return K
|
||||
|
||||
|
||||
class optStruct:
|
||||
def __init__(self, dataMatIn, classLabels, C, toler, kTup): # Initialize the structure with the parameters
|
||||
self.X = dataMatIn
|
||||
self.labelMat = classLabels
|
||||
self.C = C
|
||||
self.tol = toler
|
||||
self.m = shape(dataMatIn)[0]
|
||||
self.alphas = mat(zeros((self.m, 1)))
|
||||
self.b = 0
|
||||
self.eCache = mat(zeros((self.m, 2))) # first column is valid flag
|
||||
self.K = mat(zeros((self.m, self.m)))
|
||||
for i in range(self.m):
|
||||
self.K[:, i] = kernelTrans(self.X, self.X[i, :], kTup)
|
||||
|
||||
|
||||
def calcEk(oS, k):
|
||||
fXk = float(multiply(oS.alphas, oS.labelMat).T * oS.K[:, k] + oS.b)
|
||||
Ek = fXk - float(oS.labelMat[k])
|
||||
return Ek
|
||||
|
||||
|
||||
def selectJ(i, oS, Ei): # this is the second choice -heurstic, and calcs Ej
|
||||
maxK = -1
|
||||
maxDeltaE = 0
|
||||
Ej = 0
|
||||
oS.eCache[i] = [1, Ei] # set valid #choose the alpha that gives the maximum delta E
|
||||
validEcacheList = nonzero(oS.eCache[:, 0].A)[0]
|
||||
if (len(validEcacheList)) > 1:
|
||||
for k in validEcacheList: # loop through valid Ecache values and find the one that maximizes delta E
|
||||
if k == i: continue # don't calc for i, waste of time
|
||||
Ek = calcEk(oS, k)
|
||||
deltaE = abs(Ei - Ek)
|
||||
if (deltaE > maxDeltaE):
|
||||
maxK = k;
|
||||
maxDeltaE = deltaE;
|
||||
Ej = Ek
|
||||
return maxK, Ej
|
||||
else: # in this case (first time around) we don't have any valid eCache values
|
||||
j = selectJrand(i, oS.m)
|
||||
Ej = calcEk(oS, j)
|
||||
return j, Ej
|
||||
|
||||
|
||||
def updateEk(oS, k): # after any alpha has changed update the new value in the cache
|
||||
Ek = calcEk(oS, k)
|
||||
oS.eCache[k] = [1, Ek]
|
||||
|
||||
|
||||
def innerL(i, oS):
|
||||
Ei = calcEk(oS, i)
|
||||
if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or (
|
||||
(oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
|
||||
j, Ej = selectJ(i, oS, Ei) # this has been changed from selectJrand
|
||||
alphaIold = oS.alphas[i].copy();
|
||||
alphaJold = oS.alphas[j].copy();
|
||||
if (oS.labelMat[i] != oS.labelMat[j]):
|
||||
L = max(0, oS.alphas[j] - oS.alphas[i])
|
||||
H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
|
||||
else:
|
||||
L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
|
||||
H = min(oS.C, oS.alphas[j] + oS.alphas[i])
|
||||
if L == H: print
|
||||
"L==H";
|
||||
return 0
|
||||
eta = 2.0 * oS.K[i, j] - oS.K[i, i] - oS.K[j, j] # changed for kernel
|
||||
if eta >= 0: print
|
||||
"eta>=0";
|
||||
return 0
|
||||
oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej) / eta
|
||||
oS.alphas[j] = clipAlpha(oS.alphas[j], H, L)
|
||||
updateEk(oS, j) # added this for the Ecache
|
||||
if (abs(oS.alphas[j] - alphaJold) < 0.00001): print
|
||||
"j not moving enough";
|
||||
return 0
|
||||
oS.alphas[i] += oS.labelMat[j] * oS.labelMat[i] * (alphaJold - oS.alphas[j]) # update i by the same amount as j
|
||||
updateEk(oS, i) # added this for the Ecache #the update is in the oppostie direction
|
||||
b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.K[i, i] - oS.labelMat[j] * (
|
||||
oS.alphas[j] - alphaJold) * oS.K[i, j]
|
||||
b2 = oS.b - Ej - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.K[i, j] - oS.labelMat[j] * (
|
||||
oS.alphas[j] - alphaJold) * oS.K[j, j]
|
||||
if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]):
|
||||
oS.b = b1
|
||||
elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]):
|
||||
oS.b = b2
|
||||
else:
|
||||
oS.b = (b1 + b2) / 2.0
|
||||
return 1
|
||||
else:
|
||||
return 0
|
||||
|
||||
|
||||
def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup=('lin', 0)): # full Platt SMO
|
||||
oS = optStruct(mat(dataMatIn), mat(classLabels).transpose(), C, toler, kTup)
|
||||
iter = 0
|
||||
entireSet = True;
|
||||
alphaPairsChanged = 0
|
||||
while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
|
||||
alphaPairsChanged = 0
|
||||
if entireSet: # go over all
|
||||
for i in range(oS.m):
|
||||
alphaPairsChanged += innerL(i, oS)
|
||||
print
|
||||
"fullSet, iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged)
|
||||
iter += 1
|
||||
else: # go over non-bound (railed) alphas
|
||||
nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
|
||||
for i in nonBoundIs:
|
||||
alphaPairsChanged += innerL(i, oS)
|
||||
print
|
||||
"non-bound, iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged)
|
||||
iter += 1
|
||||
if entireSet:
|
||||
entireSet = False # toggle entire set loop
|
||||
elif (alphaPairsChanged == 0):
|
||||
entireSet = True
|
||||
print
|
||||
"iteration number: %d" % iter
|
||||
return oS.b, oS.alphas
|
||||
|
||||
|
||||
def calcWs(alphas, dataArr, classLabels):
|
||||
X = mat(dataArr);
|
||||
labelMat = mat(classLabels).transpose()
|
||||
m, n = shape(X)
|
||||
w = zeros((n, 1))
|
||||
for i in range(m):
|
||||
w += multiply(alphas[i] * labelMat[i], X[i, :].T)
|
||||
return w
|
||||
|
||||
|
||||
def testRbf(k1=1.3):
|
||||
dataArr, labelArr = loadDataSet('testSetRBF.txt')
|
||||
b, alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) # C=200 important
|
||||
datMat = mat(dataArr);
|
||||
labelMat = mat(labelArr).transpose()
|
||||
svInd = nonzero(alphas.A > 0)[0]
|
||||
sVs = datMat[svInd] # get matrix of only support vectors
|
||||
labelSV = labelMat[svInd];
|
||||
print
|
||||
"there are %d Support Vectors" % shape(sVs)[0]
|
||||
m, n = shape(datMat)
|
||||
errorCount = 0
|
||||
for i in range(m):
|
||||
kernelEval = kernelTrans(sVs, datMat[i, :], ('rbf', k1))
|
||||
predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
|
||||
if sign(predict) != sign(labelArr[i]): errorCount += 1
|
||||
print
|
||||
"the training error rate is: %f" % (float(errorCount) / m)
|
||||
dataArr, labelArr = loadDataSet('testSetRBF2.txt')
|
||||
errorCount = 0
|
||||
datMat = mat(dataArr);
|
||||
labelMat = mat(labelArr).transpose()
|
||||
m, n = shape(datMat)
|
||||
for i in range(m):
|
||||
kernelEval = kernelTrans(sVs, datMat[i, :], ('rbf', k1))
|
||||
predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
|
||||
if sign(predict) != sign(labelArr[i]): errorCount += 1
|
||||
print
|
||||
"the test error rate is: %f" % (float(errorCount) / m)
|
||||
|
||||
|
||||
def img2vector(filename):
|
||||
returnVect = zeros((1, 1024))
|
||||
fr = open(filename)
|
||||
for i in range(32):
|
||||
lineStr = fr.readline()
|
||||
for j in range(32):
|
||||
returnVect[0, 32 * i + j] = int(lineStr[j])
|
||||
return returnVect
|
||||
|
||||
|
||||
def loadImages(dirName):
|
||||
from os import listdir
|
||||
hwLabels = []
|
||||
trainingFileList = listdir(dirName) # load the training set
|
||||
m = len(trainingFileList)
|
||||
trainingMat = zeros((m, 1024))
|
||||
for i in range(m):
|
||||
fileNameStr = trainingFileList[i]
|
||||
fileStr = fileNameStr.split('.')[0] # take off .txt
|
||||
classNumStr = int(fileStr.split('_')[0])
|
||||
if classNumStr == 9:
|
||||
hwLabels.append(-1)
|
||||
else:
|
||||
hwLabels.append(1)
|
||||
trainingMat[i, :] = img2vector('%s/%s' % (dirName, fileNameStr))
|
||||
return trainingMat, hwLabels
|
||||
|
||||
|
||||
def testDigits(kTup=('rbf', 10)):
|
||||
dataArr, labelArr = loadImages('trainingDigits')
|
||||
b, alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
|
||||
datMat = mat(dataArr);
|
||||
labelMat = mat(labelArr).transpose()
|
||||
svInd = nonzero(alphas.A > 0)[0]
|
||||
sVs = datMat[svInd]
|
||||
labelSV = labelMat[svInd];
|
||||
print("there are %d Support Vectors" % shape(sVs)[0])
|
||||
m, n = shape(datMat)
|
||||
errorCount = 0
|
||||
for i in range(m):
|
||||
kernelEval = kernelTrans(sVs, datMat[i, :], kTup)
|
||||
predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
|
||||
if sign(predict) != sign(labelArr[i]): errorCount += 1
|
||||
print
|
||||
"the training error rate is: %f" % (float(errorCount) / m)
|
||||
dataArr, labelArr = loadImages('testDigits')
|
||||
errorCount = 0
|
||||
datMat = mat(dataArr);
|
||||
labelMat = mat(labelArr).transpose()
|
||||
m, n = shape(datMat)
|
||||
for i in range(m):
|
||||
kernelEval = kernelTrans(sVs, datMat[i, :], kTup)
|
||||
predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
|
||||
if sign(predict) != sign(labelArr[i]): errorCount += 1
|
||||
print
|
||||
"the test error rate is: %f" % (float(errorCount) / m)
|
||||
|
||||
|
||||
'''#######********************************
|
||||
Non-Kernel VErsions below
|
||||
''' #######********************************
|
||||
|
||||
|
||||
class optStructK:
|
||||
def __init__(self, dataMatIn, classLabels, C, toler): # Initialize the structure with the parameters
|
||||
self.X = dataMatIn
|
||||
self.labelMat = classLabels
|
||||
self.C = C
|
||||
self.tol = toler
|
||||
self.m = shape(dataMatIn)[0]
|
||||
self.alphas = mat(zeros((self.m, 1)))
|
||||
self.b = 0
|
||||
self.eCache = mat(zeros((self.m, 2))) # first column is valid flag
|
||||
|
||||
|
||||
def calcEkK(oS, k):
|
||||
fXk = float(multiply(oS.alphas, oS.labelMat).T * (oS.X * oS.X[k, :].T)) + oS.b
|
||||
Ek = fXk - float(oS.labelMat[k])
|
||||
return Ek
|
||||
|
||||
|
||||
def selectJK(i, oS, Ei): # this is the second choice -heurstic, and calcs Ej
|
||||
maxK = -1
|
||||
maxDeltaE = 0
|
||||
Ej = 0
|
||||
oS.eCache[i] = [1, Ei] # set valid #choose the alpha that gives the maximum delta E
|
||||
validEcacheList = nonzero(oS.eCache[:, 0].A)[0]
|
||||
if (len(validEcacheList)) > 1:
|
||||
for k in validEcacheList: # loop through valid Ecache values and find the one that maximizes delta E
|
||||
if k == i: continue # don't calc for i, waste of time
|
||||
Ek = calcEk(oS, k)
|
||||
deltaE = abs(Ei - Ek)
|
||||
if (deltaE > maxDeltaE):
|
||||
maxK = k;
|
||||
maxDeltaE = deltaE;
|
||||
Ej = Ek
|
||||
return maxK, Ej
|
||||
else: # in this case (first time around) we don't have any valid eCache values
|
||||
j = selectJrand(i, oS.m)
|
||||
Ej = calcEk(oS, j)
|
||||
return j, Ej
|
||||
|
||||
|
||||
def updateEkK(oS, k): # after any alpha has changed update the new value in the cache
|
||||
Ek = calcEk(oS, k)
|
||||
oS.eCache[k] = [1, Ek]
|
||||
|
||||
|
||||
def innerLK(i, oS):
|
||||
Ei = calcEk(oS, i)
|
||||
if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or (
|
||||
(oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
|
||||
j, Ej = selectJ(i, oS, Ei) # this has been changed from selectJrand
|
||||
alphaIold = oS.alphas[i].copy();
|
||||
alphaJold = oS.alphas[j].copy();
|
||||
if (oS.labelMat[i] != oS.labelMat[j]):
|
||||
L = max(0, oS.alphas[j] - oS.alphas[i])
|
||||
H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
|
||||
else:
|
||||
L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
|
||||
H = min(oS.C, oS.alphas[j] + oS.alphas[i])
|
||||
if L == H: print
|
||||
"L==H";
|
||||
return 0
|
||||
eta = 2.0 * oS.X[i, :] * oS.X[j, :].T - oS.X[i, :] * oS.X[i, :].T - oS.X[j, :] * oS.X[j, :].T
|
||||
if eta >= 0: print
|
||||
"eta>=0";
|
||||
return 0
|
||||
oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej) / eta
|
||||
oS.alphas[j] = clipAlpha(oS.alphas[j], H, L)
|
||||
updateEk(oS, j) # added this for the Ecache
|
||||
if (abs(oS.alphas[j] - alphaJold) < 0.00001): print
|
||||
"j not moving enough";
|
||||
return 0
|
||||
oS.alphas[i] += oS.labelMat[j] * oS.labelMat[i] * (alphaJold - oS.alphas[j]) # update i by the same amount as j
|
||||
updateEk(oS, i) # added this for the Ecache #the update is in the oppostie direction
|
||||
b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :] * oS.X[i, :].T - oS.labelMat[j] * (
|
||||
oS.alphas[j] - alphaJold) * oS.X[i, :] * oS.X[j, :].T
|
||||
b2 = oS.b - Ej - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :] * oS.X[j, :].T - oS.labelMat[j] * (
|
||||
oS.alphas[j] - alphaJold) * oS.X[j, :] * oS.X[j, :].T
|
||||
if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]):
|
||||
oS.b = b1
|
||||
elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]):
|
||||
oS.b = b2
|
||||
else:
|
||||
oS.b = (b1 + b2) / 2.0
|
||||
return 1
|
||||
else:
|
||||
return 0
|
||||
|
||||
|
||||
def smoPK(dataMatIn, classLabels, C, toler, maxIter): # full Platt SMO
|
||||
oS = optStruct(mat(dataMatIn), mat(classLabels).transpose(), C, toler)
|
||||
iter = 0
|
||||
entireSet = True;
|
||||
alphaPairsChanged = 0
|
||||
while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
|
||||
alphaPairsChanged = 0
|
||||
if entireSet: # go over all
|
||||
for i in range(oS.m):
|
||||
alphaPairsChanged += innerL(i, oS)
|
||||
print("fullSet, iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged))
|
||||
iter += 1
|
||||
else: # go over non-bound (railed) alphas
|
||||
nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
|
||||
for i in nonBoundIs:
|
||||
alphaPairsChanged += innerL(i, oS)
|
||||
print("non-bound, iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged))
|
||||
iter += 1
|
||||
if entireSet:
|
||||
entireSet = False # toggle entire set loop
|
||||
elif (alphaPairsChanged == 0):
|
||||
entireSet = True
|
||||
print("iteration number: %d" % iter)
|
||||
return oS.b, oS.alphas
|
||||
Reference in New Issue
Block a user