mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-13 15:26:28 +08:00
更新完 6.SVM支持向量机
This commit is contained in:
@@ -101,7 +101,7 @@ def calcEk(oS, k):
|
||||
k 具体的某一行
|
||||
|
||||
Returns:
|
||||
|
||||
Ek 预测结果与真实结果比对,计算误差Ek
|
||||
"""
|
||||
fXk = float(multiply(oS.alphas, oS.labelMat).T * oS.K[:, k] + oS.b)
|
||||
Ek = fXk - float(oS.labelMat[k])
|
||||
@@ -142,7 +142,7 @@ def selectJ(i, oS, Ei): # this is the second choice -heurstic, and calcs Ej
|
||||
maxK = -1
|
||||
maxDeltaE = 0
|
||||
Ej = 0
|
||||
# # 首先将输入值Ei在缓存中设置成为有效的。这里的有效意味着它已经计算好了。
|
||||
# 首先将输入值Ei在缓存中设置成为有效的。这里的有效意味着它已经计算好了。
|
||||
oS.eCache[i] = [1, Ei]
|
||||
|
||||
# print 'oS.eCache[%s]=%s' % (i, oS.eCache[i])
|
||||
@@ -515,8 +515,8 @@ if __name__ == "__main__":
|
||||
# plotfig_SVM(dataArr, labelArr, ws, b, alphas)
|
||||
|
||||
# # 有核函数的测试
|
||||
# testRbf(1)
|
||||
testRbf(0.8)
|
||||
|
||||
# 项目实战
|
||||
# 示例:手写识别问题回顾
|
||||
testDigits(('rbf', 20))
|
||||
# testDigits(('rbf', 20))
|
||||
|
||||
@@ -11,6 +11,18 @@ from numpy import *
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
class optStruct:
|
||||
def __init__(self, dataMatIn, classLabels, C, toler): # Initialize the structure with the parameters
|
||||
self.X = dataMatIn
|
||||
self.labelMat = classLabels
|
||||
self.C = C
|
||||
self.tol = toler
|
||||
self.m = shape(dataMatIn)[0]
|
||||
self.alphas = mat(zeros((self.m, 1)))
|
||||
self.b = 0
|
||||
self.eCache = mat(zeros((self.m, 2))) # first column is valid flag
|
||||
|
||||
|
||||
def loadDataSet(fileName):
|
||||
"""loadDataSet(对文件进行逐行解析,从而得到第行的类标签和整个数据矩阵)
|
||||
|
||||
@@ -61,6 +73,222 @@ def clipAlpha(aj, H, L):
|
||||
return aj
|
||||
|
||||
|
||||
def calcEk(oS, k):
|
||||
"""calcEk(求 Ek误差:预测值-真实值的差)
|
||||
|
||||
该过程在完整版的SMO算法中陪出现次数较多,因此将其单独作为一个方法
|
||||
Args:
|
||||
oS optStruct对象
|
||||
k 具体的某一行
|
||||
|
||||
Returns:
|
||||
Ek 预测结果与真实结果比对,计算误差Ek
|
||||
"""
|
||||
fXk = float(multiply(oS.alphas, oS.labelMat).T * (oS.X * oS.X[k, :].T)) + oS.b
|
||||
Ek = fXk - float(oS.labelMat[k])
|
||||
return Ek
|
||||
|
||||
|
||||
def selectJ(i, oS, Ei): # this is the second choice -heurstic, and calcs Ej
|
||||
"""selectJ(返回最优的j和Ej)
|
||||
|
||||
内循环的启发式方法。
|
||||
选择第二个(内循环)alpha的alpha值
|
||||
这里的目标是选择合适的第二个alpha值以保证每次优化中采用最大步长。
|
||||
该函数的误差与第一个alpha值Ei和下标i有关。
|
||||
Args:
|
||||
i 具体的第i一行
|
||||
oS optStruct对象
|
||||
Ei 预测结果与真实结果比对,计算误差Ei
|
||||
|
||||
Returns:
|
||||
j 随机选出的第j一行
|
||||
Ej 预测结果与真实结果比对,计算误差Ej
|
||||
"""
|
||||
maxK = -1
|
||||
maxDeltaE = 0
|
||||
Ej = 0
|
||||
# 首先将输入值Ei在缓存中设置成为有效的。这里的有效意味着它已经计算好了。
|
||||
oS.eCache[i] = [1, Ei]
|
||||
|
||||
# print 'oS.eCache[%s]=%s' % (i, oS.eCache[i])
|
||||
# print 'oS.eCache[:, 0].A=%s' % oS.eCache[:, 0].A.T
|
||||
# """
|
||||
# # 返回非0的:行列值
|
||||
# nonzero(oS.eCache[:, 0].A)= (
|
||||
# 行: array([ 0, 2, 4, 5, 8, 10, 17, 18, 20, 21, 23, 25, 26, 29, 30, 39, 46,52, 54, 55, 62, 69, 70, 76, 79, 82, 94, 97]),
|
||||
# 列: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0])
|
||||
# )
|
||||
# """
|
||||
# print 'nonzero(oS.eCache[:, 0].A)=', nonzero(oS.eCache[:, 0].A)
|
||||
# # 取行的list
|
||||
# print 'nonzero(oS.eCache[:, 0].A)[0]=', nonzero(oS.eCache[:, 0].A)[0]
|
||||
# 非零E值的行的list列表,所对应的alpha值
|
||||
validEcacheList = nonzero(oS.eCache[:, 0].A)[0]
|
||||
if (len(validEcacheList)) > 1:
|
||||
for k in validEcacheList: # 在所有的值上进行循环,并选择其中使得改变最大的那个值
|
||||
if k == i:
|
||||
continue # don't calc for i, waste of time
|
||||
|
||||
# 求 Ek误差:预测值-真实值的差
|
||||
Ek = calcEk(oS, k)
|
||||
deltaE = abs(Ei - Ek)
|
||||
if (deltaE > maxDeltaE):
|
||||
maxK = k
|
||||
maxDeltaE = deltaE
|
||||
Ej = Ek
|
||||
return maxK, Ej
|
||||
else: # 如果是第一次循环,则随机选择一个alpha值
|
||||
j = selectJrand(i, oS.m)
|
||||
|
||||
# 求 Ek误差:预测值-真实值的差
|
||||
Ej = calcEk(oS, j)
|
||||
return j, Ej
|
||||
|
||||
|
||||
def updateEk(oS, k): # after any alpha has changed update the new value in the cache
|
||||
"""updateEk(计算误差值并存入缓存中。)
|
||||
|
||||
在对alpha值进行优化之后会用到这个值。
|
||||
Args:
|
||||
oS optStruct对象
|
||||
k 某一列的行号
|
||||
"""
|
||||
|
||||
# 求 误差:预测值-真实值的差
|
||||
Ek = calcEk(oS, k)
|
||||
oS.eCache[k] = [1, Ek]
|
||||
|
||||
|
||||
def innerL(i, oS):
|
||||
"""innerL
|
||||
内循环代码
|
||||
Args:
|
||||
i 具体的某一行
|
||||
oS optStruct对象
|
||||
|
||||
Returns:
|
||||
0 找不到最优的值
|
||||
1 找到了最优的值,并且oS.Cache到缓存中
|
||||
"""
|
||||
|
||||
# 求 Ek误差:预测值-真实值的差
|
||||
Ei = calcEk(oS, i)
|
||||
|
||||
# 约束条件 (KKT条件是解决最优化问题的时用到的一种方法。我们这里提到的最优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最小值。)
|
||||
# 0<=alphas[i]<=C,但由于0和C是边界值,我们无法进行优化,因为需要增加一个alphas和降低一个alphas。
|
||||
# 表示发生错误的概率:labelMat[i]*Ei 如果超出了 toler, 才需要优化。至于正负号,我们考虑绝对值就对了。
|
||||
if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
|
||||
# 选择最大的误差对应的j进行优化。效果更明显
|
||||
j, Ej = selectJ(i, oS, Ei)
|
||||
alphaIold = oS.alphas[i].copy()
|
||||
alphaJold = oS.alphas[j].copy()
|
||||
|
||||
# L和H用于将alphas[j]调整到0-C之间。如果L==H,就不做任何改变,直接return 0
|
||||
if (oS.labelMat[i] != oS.labelMat[j]):
|
||||
L = max(0, oS.alphas[j] - oS.alphas[i])
|
||||
H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
|
||||
else:
|
||||
L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
|
||||
H = min(oS.C, oS.alphas[j] + oS.alphas[i])
|
||||
if L == H:
|
||||
print("L==H")
|
||||
return 0
|
||||
|
||||
# eta是alphas[j]的最优修改量,如果eta==0,需要退出for循环的当前迭代过程
|
||||
# 如果ETA为0,那么计算新的alphas[j]就比较麻烦了, 为什么呢? 因为2个值一样。
|
||||
# 2ab <= a^2 + b^2
|
||||
eta = 2.0 * oS.X[i, :] * oS.X[j, :].T - oS.X[i, :] * oS.X[i, :].T - oS.X[j, :] * oS.X[j, :].T
|
||||
if eta >= 0:
|
||||
print("eta>=0")
|
||||
return 0
|
||||
|
||||
# 计算出一个新的alphas[j]值
|
||||
oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej) / eta
|
||||
# 并使用辅助函数,以及L和H对其进行调整
|
||||
oS.alphas[j] = clipAlpha(oS.alphas[j], H, L)
|
||||
# 更新误差缓存
|
||||
updateEk(oS, j)
|
||||
|
||||
# 检查alpha[j]是否只是轻微的改变,如果是的话,就退出for循环。
|
||||
if (abs(oS.alphas[j] - alphaJold) < 0.00001):
|
||||
print("j not moving enough")
|
||||
return 0
|
||||
|
||||
# 然后alphas[i]和alphas[j]同样进行改变,虽然改变的大小一样,但是改变的方向正好相反
|
||||
oS.alphas[i] += oS.labelMat[j] * oS.labelMat[i] * (alphaJold - oS.alphas[j])
|
||||
# 更新误差缓存
|
||||
updateEk(oS, i)
|
||||
|
||||
# 在对alpha[i], alpha[j] 进行优化之后,给这两个alpha值设置一个常数b。
|
||||
# w= Σ[1~n] ai*yi*xi => b = yj Σ[1~n] ai*yi(xi*xj)
|
||||
# 所以: b1 - b = (y1-y) - Σ[1~n] yi*(a1-a)*(xi*x1)
|
||||
b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :] * oS.X[i, :].T - oS.labelMat[j] * (oS.alphas[j] - alphaJold) * oS.X[i, :] * oS.X[j, :].T
|
||||
b2 = oS.b - Ej - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :] * oS.X[j, :].T - oS.labelMat[j] * (oS.alphas[j] - alphaJold) * oS.X[j, :] * oS.X[j, :].T
|
||||
if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]):
|
||||
oS.b = b1
|
||||
elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]):
|
||||
oS.b = b2
|
||||
else:
|
||||
oS.b = (b1 + b2) / 2.0
|
||||
return 1
|
||||
else:
|
||||
return 0
|
||||
|
||||
|
||||
def smoP(dataMatIn, classLabels, C, toler, maxIter):
|
||||
"""
|
||||
完整SMO算法外循环,与smoSimple有些类似,但这里的循环退出条件更多一些
|
||||
Args:
|
||||
dataMatIn 数据集
|
||||
classLabels 类别标签
|
||||
C 松弛变量(常量值),允许有些数据点可以处于分隔面的错误一侧。
|
||||
控制最大化间隔和保证大部分的函数间隔小于1.0这两个目标的权重。
|
||||
可以通过调节该参数达到不同的结果。
|
||||
toler 容错率
|
||||
maxIter 退出前最大的循环次数
|
||||
Returns:
|
||||
b 模型的常量值
|
||||
alphas 拉格朗日乘子
|
||||
"""
|
||||
|
||||
# 创建一个 optStruct 对象
|
||||
oS = optStruct(mat(dataMatIn), mat(classLabels).transpose(), C, toler)
|
||||
iter = 0
|
||||
entireSet = True
|
||||
alphaPairsChanged = 0
|
||||
|
||||
# 循环遍历:循环maxIter次 并且 (alphaPairsChanged存在可以改变 or 所有行遍历一遍)
|
||||
while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
|
||||
alphaPairsChanged = 0
|
||||
|
||||
# 当entireSet=true or 非边界alpha对没有了;就开始寻找 alpha对,然后决定是否要进行else。
|
||||
if entireSet:
|
||||
# 在数据集上遍历所有可能的alpha
|
||||
for i in range(oS.m):
|
||||
# 是否存在alpha对,存在就+1
|
||||
alphaPairsChanged += innerL(i, oS)
|
||||
print("fullSet, iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged))
|
||||
iter += 1
|
||||
|
||||
# 对已存在 alpha对,选出非边界的alpha值,进行优化。
|
||||
else:
|
||||
# 遍历所有的非边界alpha值,也就是不在边界0或C上的值。
|
||||
nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
|
||||
for i in nonBoundIs:
|
||||
alphaPairsChanged += innerL(i, oS)
|
||||
print("non-bound, iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged))
|
||||
iter += 1
|
||||
|
||||
# 如果找到alpha对,就优化非边界alpha值,否则,就重新进行寻找,如果寻找一遍 遍历所有的行还是没找到,就退出循环。
|
||||
if entireSet:
|
||||
entireSet = False # toggle entire set loop
|
||||
elif (alphaPairsChanged == 0):
|
||||
entireSet = True
|
||||
print("iteration number: %d" % iter)
|
||||
return oS.b, oS.alphas
|
||||
|
||||
|
||||
def calcWs(alphas, dataArr, classLabels):
|
||||
"""
|
||||
基于alpha计算w值
|
||||
@@ -81,126 +309,6 @@ def calcWs(alphas, dataArr, classLabels):
|
||||
return w
|
||||
|
||||
|
||||
'''
|
||||
#######********************************
|
||||
Non-Kernel VErsions below
|
||||
#######********************************
|
||||
'''
|
||||
|
||||
class optStruct:
|
||||
def __init__(self, dataMatIn, classLabels, C, toler): # Initialize the structure with the parameters
|
||||
self.X = dataMatIn
|
||||
self.labelMat = classLabels
|
||||
self.C = C
|
||||
self.tol = toler
|
||||
self.m = shape(dataMatIn)[0]
|
||||
self.alphas = mat(zeros((self.m, 1)))
|
||||
self.b = 0
|
||||
self.eCache = mat(zeros((self.m, 2))) # first column is valid flag
|
||||
|
||||
|
||||
def calcEk(oS, k):
|
||||
fXk = float(multiply(oS.alphas, oS.labelMat).T * (oS.X * oS.X[k, :].T)) + oS.b
|
||||
Ek = fXk - float(oS.labelMat[k])
|
||||
return Ek
|
||||
|
||||
|
||||
def selectJ(i, oS, Ei): # this is the second choice -heurstic, and calcs Ej
|
||||
maxK = -1
|
||||
maxDeltaE = 0
|
||||
Ej = 0
|
||||
oS.eCache[i] = [1, Ei] # set valid #choose the alpha that gives the maximum delta E
|
||||
validEcacheList = nonzero(oS.eCache[:, 0].A)[0]
|
||||
if (len(validEcacheList)) > 1:
|
||||
for k in validEcacheList: # loop through valid Ecache values and find the one that maximizes delta E
|
||||
if k == i: continue # don't calc for i, waste of time
|
||||
Ek = calcEk(oS, k)
|
||||
deltaE = abs(Ei - Ek)
|
||||
if (deltaE > maxDeltaE):
|
||||
maxK = k
|
||||
maxDeltaE = deltaE
|
||||
Ej = Ek
|
||||
return maxK, Ej
|
||||
else: # in this case (first time around) we don't have any valid eCache values
|
||||
j = selectJrand(i, oS.m)
|
||||
Ej = calcEk(oS, j)
|
||||
return j, Ej
|
||||
|
||||
|
||||
def updateEk(oS, k): # after any alpha has changed update the new value in the cache
|
||||
Ek = calcEk(oS, k)
|
||||
oS.eCache[k] = [1, Ek]
|
||||
|
||||
|
||||
def innerL(i, oS):
|
||||
Ei = calcEk(oS, i)
|
||||
if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or (
|
||||
(oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
|
||||
j, Ej = selectJ(i, oS, Ei) # this has been changed from selectJrand
|
||||
alphaIold = oS.alphas[i].copy()
|
||||
alphaJold = oS.alphas[j].copy()
|
||||
if (oS.labelMat[i] != oS.labelMat[j]):
|
||||
L = max(0, oS.alphas[j] - oS.alphas[i])
|
||||
H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
|
||||
else:
|
||||
L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
|
||||
H = min(oS.C, oS.alphas[j] + oS.alphas[i])
|
||||
if L == H:
|
||||
print("L==H")
|
||||
return 0
|
||||
eta = 2.0 * oS.X[i, :] * oS.X[j, :].T - oS.X[i, :] * oS.X[i, :].T - oS.X[j, :] * oS.X[j, :].T
|
||||
if eta >= 0:
|
||||
print("eta>=0")
|
||||
return 0
|
||||
oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej) / eta
|
||||
oS.alphas[j] = clipAlpha(oS.alphas[j], H, L)
|
||||
updateEk(oS, j) # added this for the Ecache
|
||||
if (abs(oS.alphas[j] - alphaJold) < 0.00001):
|
||||
print("j not moving enough")
|
||||
return 0
|
||||
oS.alphas[i] += oS.labelMat[j] * oS.labelMat[i] * (alphaJold - oS.alphas[j]) # update i by the same amount as j
|
||||
updateEk(oS, i) # added this for the Ecache #the update is in the oppostie direction
|
||||
b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :] * oS.X[i, :].T - oS.labelMat[j] * (
|
||||
oS.alphas[j] - alphaJold) * oS.X[i, :] * oS.X[j, :].T
|
||||
b2 = oS.b - Ej - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :] * oS.X[j, :].T - oS.labelMat[j] * (
|
||||
oS.alphas[j] - alphaJold) * oS.X[j, :] * oS.X[j, :].T
|
||||
if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]):
|
||||
oS.b = b1
|
||||
elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]):
|
||||
oS.b = b2
|
||||
else:
|
||||
oS.b = (b1 + b2) / 2.0
|
||||
return 1
|
||||
else:
|
||||
return 0
|
||||
|
||||
|
||||
def smoP(dataMatIn, classLabels, C, toler, maxIter): # full Platt SMO
|
||||
oS = optStruct(mat(dataMatIn), mat(classLabels).transpose(), C, toler)
|
||||
iter = 0
|
||||
entireSet = True
|
||||
alphaPairsChanged = 0
|
||||
while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
|
||||
alphaPairsChanged = 0
|
||||
if entireSet: # go over all
|
||||
for i in range(oS.m):
|
||||
alphaPairsChanged += innerL(i, oS)
|
||||
print("fullSet, iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged))
|
||||
iter += 1
|
||||
else: # go over non-bound (railed) alphas
|
||||
nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
|
||||
for i in nonBoundIs:
|
||||
alphaPairsChanged += innerL(i, oS)
|
||||
print("non-bound, iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged))
|
||||
iter += 1
|
||||
if entireSet:
|
||||
entireSet = False # toggle entire set loop
|
||||
elif (alphaPairsChanged == 0):
|
||||
entireSet = True
|
||||
print("iteration number: %d" % iter)
|
||||
return oS.b, oS.alphas
|
||||
|
||||
|
||||
def plotfig_SVM(xArr, yArr, ws, b, alphas):
|
||||
"""
|
||||
参考地址:
|
||||
|
||||
@@ -145,7 +145,7 @@ def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
|
||||
# 然后alphas[i]和alphas[j]同样进行改变,虽然改变的大小一样,但是改变的方向正好相反
|
||||
alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])
|
||||
# 在对alpha[i], alpha[j] 进行优化之后,给这两个alpha值设置一个常数b。
|
||||
# w= Σ[1~n] ai*yi*xi => b = yi- Σ[1~n] ai*yi(xi*xj)
|
||||
# w= Σ[1~n] ai*yi*xi => b = yj- Σ[1~n] ai*yi(xi*xj)
|
||||
# 所以: b1 - b = (y1-y) - Σ[1~n] yi*(a1-a)*(xi*x1)
|
||||
b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
|
||||
b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
|
||||
@@ -158,6 +158,7 @@ def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
|
||||
alphaPairsChanged += 1
|
||||
print("iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged))
|
||||
# 在for循环外,检查alpha值是否做了更新,如果在更新则将iter设为0后继续运行程序
|
||||
# 知道更新完毕后,iter次循环无变化,才推出循环。
|
||||
if (alphaPairsChanged == 0):
|
||||
iter += 1
|
||||
else:
|
||||
|
||||
Reference in New Issue
Block a user