mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-11 14:26:04 +08:00
SVM smoSimple
This commit is contained in:
118
src/python/06.SVM/svmMLiA.py
Normal file
118
src/python/06.SVM/svmMLiA.py
Normal file
@@ -0,0 +1,118 @@
|
||||
"""
|
||||
Created on Nov 4, 2010
|
||||
Update on 2017-03-21
|
||||
Chapter 5 source file for Machine Learing in Action
|
||||
@author: Peter/geekidentity
|
||||
"""
|
||||
from numpy import *
|
||||
from time import sleep
|
||||
|
||||
def loadDataSet(fileName):
|
||||
"""
|
||||
对文件进行逐行解析,从而得到第行的类标签和整个数据矩阵
|
||||
Args:
|
||||
fileName: testSet.txt
|
||||
|
||||
Returns:
|
||||
数据矩阵, 类标签
|
||||
"""
|
||||
dataMat = []; labelMat = []
|
||||
fr = open(fileName)
|
||||
for line in fr.readlines():
|
||||
lineArr = line.strip().split('\t')
|
||||
dataMat.append([float(lineArr[0]), float(lineArr[1])])
|
||||
labelMat.append(float(lineArr[2]))
|
||||
return dataMat,labelMat
|
||||
|
||||
def selectJrand(i,m):
|
||||
"""
|
||||
随机选择一个整数
|
||||
Args:
|
||||
i: 第一个alpha的下标
|
||||
m: 所有alpha的数目
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
j=i #we want to select any J not equal to i
|
||||
while (j==i):
|
||||
j = int(random.uniform(0,m))
|
||||
return j
|
||||
|
||||
def clipAlpha(aj,H,L):
|
||||
"""
|
||||
用于调整大于H或小于L的alpha值
|
||||
Args:
|
||||
aj:
|
||||
H:
|
||||
L:
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
if aj > H:
|
||||
aj = H
|
||||
if L > aj:
|
||||
aj = L
|
||||
return aj
|
||||
|
||||
def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
|
||||
"""
|
||||
SVM SMO算法的简单实现:
|
||||
创建一个alpha向量并将其初始化为0向量
|
||||
当迭代次数据小于最大迭代次数时(外循环)
|
||||
对数据集中的每个数据向量(内循环):
|
||||
如果该数据向量可以被优化:
|
||||
随机选择另外一个数据向量
|
||||
同时优化这两个向量
|
||||
如果两个向量都不能被优化,退出内循环
|
||||
如果所有向量都没有被优化,增加迭代数目,继续下一次循环
|
||||
Args:
|
||||
dataMatIn: 数据集
|
||||
classLabels: 类别标签
|
||||
C: 常数C
|
||||
toler: 容错率
|
||||
maxIter: 退出前最大的循环次数
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose()
|
||||
b = 0; m,n = shape(dataMatrix)
|
||||
alphas = mat(zeros((m,1)))
|
||||
iter = 0
|
||||
while (iter < maxIter):
|
||||
alphaPairsChanged = 0
|
||||
for i in range(m):
|
||||
fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b
|
||||
Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions
|
||||
if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):
|
||||
j = selectJrand(i,m)
|
||||
fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b
|
||||
Ej = fXj - float(labelMat[j])
|
||||
alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy()
|
||||
if (labelMat[i] != labelMat[j]):
|
||||
L = max(0, alphas[j] - alphas[i])
|
||||
H = min(C, C + alphas[j] - alphas[i])
|
||||
else:
|
||||
L = max(0, alphas[j] + alphas[i] - C)
|
||||
H = min(C, alphas[j] + alphas[i])
|
||||
if L==H: print("L==H"); continue
|
||||
eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T
|
||||
if eta >= 0: print("eta>=0"); continue
|
||||
alphas[j] -= labelMat[j]*(Ei - Ej)/eta
|
||||
alphas[j] = clipAlpha(alphas[j],H,L)
|
||||
if (abs(alphas[j] - alphaJold) < 0.00001): print("j not moving enough"); continue
|
||||
alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])#update i by the same amount as j
|
||||
#the update is in the oppostie direction
|
||||
b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
|
||||
b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
|
||||
if (0 < alphas[i]) and (C > alphas[i]): b = b1
|
||||
elif (0 < alphas[j]) and (C > alphas[j]): b = b2
|
||||
else: b = (b1 + b2)/2.0
|
||||
alphaPairsChanged += 1
|
||||
print("iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
|
||||
if (alphaPairsChanged == 0): iter += 1
|
||||
else: iter = 0
|
||||
print("iteration number: %d" % iter)
|
||||
return b,alphas
|
||||
Reference in New Issue
Block a user