mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-09 21:36:27 +08:00
更新完AdaBoost算法代码
This commit is contained in:
204
src/python/07.AdaBoost/adaboost.py
Normal file
204
src/python/07.AdaBoost/adaboost.py
Normal file
@@ -0,0 +1,204 @@
|
||||
#!/usr/bin/python
|
||||
# coding:utf8
|
||||
|
||||
'''
|
||||
Created on Nov 28, 2010
|
||||
Adaboost is short for Adaptive Boosting
|
||||
@author: Peter/jiangzhonglian
|
||||
'''
|
||||
from numpy import *
|
||||
|
||||
|
||||
def loadSimpData():
|
||||
""" 测试数据
|
||||
Returns:
|
||||
dataArr feature对应的数据集
|
||||
labelArr feature对应的分类标签
|
||||
"""
|
||||
dataArr = array([[1., 2.1], [2., 1.1], [1.3, 1.], [1., 1.], [2., 1.]])
|
||||
labelArr = [1.0, 1.0, -1.0, -1.0, 1.0]
|
||||
return dataArr, labelArr
|
||||
|
||||
|
||||
def stumpClassify(dataMat, dimen, threshVal, threshIneq):
|
||||
"""stumpClassify(将数据集,按照feature列的value进行 二元切分比较来赋值)
|
||||
|
||||
Args:
|
||||
dataMat Matrix数据集
|
||||
dimen 特征列
|
||||
threshVal 特征列要比较的值
|
||||
Returns:
|
||||
retArray 结果集
|
||||
"""
|
||||
retArray = ones((shape(dataMat)[0], 1))
|
||||
# dataMat[:, dimen] 表示数据集中第dimen列的所有值
|
||||
# print '-----', threshIneq, dataMat[:, dimen], threshVal
|
||||
if threshIneq == 'lt':
|
||||
retArray[dataMat[:, dimen] <= threshVal] = -1.0
|
||||
else:
|
||||
retArray[dataMat[:, dimen] > threshVal] = -1.0
|
||||
return retArray
|
||||
|
||||
|
||||
def buildStump(dataArr, labelArr, D):
|
||||
|
||||
# 转换数据
|
||||
dataMat = mat(dataArr)
|
||||
labelMat = mat(labelArr).T
|
||||
# m行 n列
|
||||
m, n = shape(dataMat)
|
||||
|
||||
# 初始化数据
|
||||
numSteps = 10.0
|
||||
bestStump = {}
|
||||
bestClasEst = mat(zeros((m, 1)))
|
||||
# 初始化的最小误差为无穷大
|
||||
minError = inf
|
||||
|
||||
# 循环所有的feature列
|
||||
for i in range(n):
|
||||
rangeMin = dataMat[:, i].min()
|
||||
rangeMax = dataMat[:, i].max()
|
||||
# print 'rangeMin=%s, rangeMax=%s' % (rangeMin, rangeMax)
|
||||
# 计算每一份的元素个数
|
||||
stepSize = (rangeMax-rangeMin)/numSteps
|
||||
# 分成-1~numSteps= 1+numSteps份, 加本身是需要+1的
|
||||
for j in range(-1, int(numSteps)+1):
|
||||
# go over less than and greater than
|
||||
for inequal in ['lt', 'gt']:
|
||||
# 如果是-1,那么得到rangeMin-stepSize; 如果是numSteps,那么得到rangeMax
|
||||
threshVal = (rangeMin + float(j) * stepSize)
|
||||
# 对单层决策树进行简单分类
|
||||
predictedVals = stumpClassify(dataMat, i, threshVal, inequal)
|
||||
# print predictedVals
|
||||
errArr = mat(ones((m, 1)))
|
||||
# 正确为0,错误为1
|
||||
errArr[predictedVals == labelMat] = 0
|
||||
# 计算 平均每个特征的概率0.2*错误概率的总和为多少,就知道错误率多高
|
||||
# calc total error multiplied by D
|
||||
weightedError = D.T*errArr
|
||||
'''
|
||||
dim 表示 feature列
|
||||
threshVal 表示树的分界值
|
||||
inequal 表示计算树左右颠倒的错误率的情况
|
||||
weightedError 表示整体结果的错误率
|
||||
'''
|
||||
# print "split: dim %d, thresh %.2f, thresh ineqal: %s, the weighted error is %.3f" % (i, threshVal, inequal, weightedError)
|
||||
if weightedError < minError:
|
||||
minError = weightedError
|
||||
bestClasEst = predictedVals.copy()
|
||||
bestStump['dim'] = i
|
||||
bestStump['thresh'] = threshVal
|
||||
bestStump['ineq'] = inequal
|
||||
return bestStump, minError, bestClasEst
|
||||
|
||||
|
||||
def adaBoostTrainDS(dataArr, labelArr, numIt=40):
|
||||
weakClassArr = []
|
||||
m = shape(dataArr)[0]
|
||||
# 初始化 init D to all equal
|
||||
D = mat(ones((m, 1))/m)
|
||||
aggClassEst = mat(zeros((m, 1)))
|
||||
for i in range(numIt):
|
||||
# build Stump
|
||||
bestStump, error, classEst = buildStump(dataArr, labelArr, D)
|
||||
# print "D:", D.T
|
||||
# calc alpha, throw in max(error,eps) to account for error=0
|
||||
alpha = float(0.5*log((1.0-error)/max(error, 1e-16)))
|
||||
bestStump['alpha'] = alpha
|
||||
# store Stump Params in Array
|
||||
weakClassArr.append(bestStump)
|
||||
|
||||
# print "alpha=%s, classEst=%s, bestStump=%s, error=%s " % (alpha, classEst.T, bestStump, error)
|
||||
# -1主要是下面求e的-alpha次方; 如果判断正确,乘积为1,否则为-1,这样就可以算出分类的情况了
|
||||
expon = multiply(-1*alpha*mat(labelArr).T, classEst)
|
||||
# print 'expon=', -1*alpha*mat(labelArr).T, classEst, expon
|
||||
# 计算e的expon次方,然后计算得到一个综合的概率的值
|
||||
# 结果发现: 正确的alpha的权重值变小了,错误的变大了。也就说D里面分类的权重值变了。(可以举例验证,假设:alpha=0.6,什么的)
|
||||
D = multiply(D, exp(expon))
|
||||
D = D/D.sum()
|
||||
print "D: ", D.T
|
||||
# 计算分类结果的值,在上一轮结果的基础上,进行加和操作
|
||||
# calc training error of all classifiers, if this is 0 quit for loop early (use break)
|
||||
aggClassEst += alpha*classEst
|
||||
print "aggClassEst: ", aggClassEst.T
|
||||
# sign 判断正为1, 0为0, 负为-1,通过最终加和的权重值,判断符号。
|
||||
# 结果为:错误的样本标签集合,因为是 !=,那么结果就是0 正, 1 负
|
||||
aggErrors = multiply(sign(aggClassEst) != mat(labelArr).T, ones((m, 1)))
|
||||
errorRate = aggErrors.sum()/m
|
||||
print "total error=%s " % (errorRate)
|
||||
if errorRate == 0.0:
|
||||
break
|
||||
return weakClassArr, aggClassEst
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
dataArr, labelArr = loadSimpData()
|
||||
print '-----\n', dataArr, '\n', labelArr
|
||||
|
||||
# D表示最初,对1进行均分为5份,平均每一个初始的概率都为0.2
|
||||
D = mat(ones((5, 1))/5)
|
||||
# print '-----', D
|
||||
|
||||
# print buildStump(dataArr, labelArr, D)
|
||||
weakClassArr, aggClassEst = adaBoostTrainDS(dataArr, labelArr, 9)
|
||||
print weakClassArr
|
||||
|
||||
|
||||
|
||||
|
||||
def loadDataSet(fileName): #general function to parse tab -delimited floats
|
||||
numFeat = len(open(fileName).readline().split('\t')) #get number of fields
|
||||
dataArr = []
|
||||
labelArr = []
|
||||
fr = open(fileName)
|
||||
for line in fr.readlines():
|
||||
lineArr = []
|
||||
curLine = line.strip().split('\t')
|
||||
for i in range(numFeat-1):
|
||||
lineArr.append(float(curLine[i]))
|
||||
dataArr.append(lineArr)
|
||||
labelArr.append(float(curLine[-1]))
|
||||
return dataArr, labelArr
|
||||
|
||||
|
||||
|
||||
|
||||
def adaClassify(datToClass,classifierArr):
|
||||
dataMatrix = mat(datToClass)#do stuff similar to last aggClassEst in adaBoostTrainDS
|
||||
m = shape(dataMatrix)[0]
|
||||
aggClassEst = mat(zeros((m,1)))
|
||||
for i in range(len(classifierArr)):
|
||||
classEst = stumpClassify(dataMatrix,classifierArr[i]['dim'],\
|
||||
classifierArr[i]['thresh'],\
|
||||
classifierArr[i]['ineq'])#call stump classify
|
||||
aggClassEst += classifierArr[i]['alpha']*classEst
|
||||
print aggClassEst
|
||||
return sign(aggClassEst)
|
||||
|
||||
def plotROC(predStrengths, classLabels):
|
||||
import matplotlib.pyplot as plt
|
||||
cur = (1.0,1.0) #cursor
|
||||
ySum = 0.0 #variable to calculate AUC
|
||||
numPosClas = sum(array(classLabels)==1.0)
|
||||
yStep = 1/float(numPosClas); xStep = 1/float(len(classLabels)-numPosClas)
|
||||
sortedIndicies = predStrengths.argsort()#get sorted index, it's reverse
|
||||
fig = plt.figure()
|
||||
fig.clf()
|
||||
ax = plt.subplot(111)
|
||||
#loop through all the values, drawing a line segment at each point
|
||||
for index in sortedIndicies.tolist()[0]:
|
||||
if classLabels[index] == 1.0:
|
||||
delX = 0; delY = yStep;
|
||||
else:
|
||||
delX = xStep; delY = 0;
|
||||
ySum += cur[1]
|
||||
#draw line from cur to (cur[0]-delX,cur[1]-delY)
|
||||
ax.plot([cur[0],cur[0]-delX],[cur[1],cur[1]-delY], c='b')
|
||||
cur = (cur[0]-delX,cur[1]-delY)
|
||||
ax.plot([0,1],[0,1],'b--')
|
||||
plt.xlabel('False positive rate'); plt.ylabel('True positive rate')
|
||||
plt.title('ROC curve for AdaBoost horse colic detection system')
|
||||
ax.axis([0,1,0,1])
|
||||
plt.show()
|
||||
print "the Area Under the Curve is: ",ySum*xStep
|
||||
Reference in New Issue
Block a user