更新完AdaBoost算法代码

This commit is contained in:
jiangzhonglian
2017-03-14 23:24:17 +08:00
parent 31f59dbec4
commit 95d341fbb8
2 changed files with 208 additions and 0 deletions

View File

@@ -0,0 +1,204 @@
#!/usr/bin/python
# coding:utf8
'''
Created on Nov 28, 2010
Adaboost is short for Adaptive Boosting
@author: Peter/jiangzhonglian
'''
from numpy import *
def loadSimpData():
""" 测试数据
Returns:
dataArr feature对应的数据集
labelArr feature对应的分类标签
"""
dataArr = array([[1., 2.1], [2., 1.1], [1.3, 1.], [1., 1.], [2., 1.]])
labelArr = [1.0, 1.0, -1.0, -1.0, 1.0]
return dataArr, labelArr
def stumpClassify(dataMat, dimen, threshVal, threshIneq):
"""stumpClassify(将数据集按照feature列的value进行 二元切分比较来赋值)
Args:
dataMat Matrix数据集
dimen 特征列
threshVal 特征列要比较的值
Returns:
retArray 结果集
"""
retArray = ones((shape(dataMat)[0], 1))
# dataMat[:, dimen] 表示数据集中第dimen列的所有值
# print '-----', threshIneq, dataMat[:, dimen], threshVal
if threshIneq == 'lt':
retArray[dataMat[:, dimen] <= threshVal] = -1.0
else:
retArray[dataMat[:, dimen] > threshVal] = -1.0
return retArray
def buildStump(dataArr, labelArr, D):
# 转换数据
dataMat = mat(dataArr)
labelMat = mat(labelArr).T
# m行 n列
m, n = shape(dataMat)
# 初始化数据
numSteps = 10.0
bestStump = {}
bestClasEst = mat(zeros((m, 1)))
# 初始化的最小误差为无穷大
minError = inf
# 循环所有的feature列
for i in range(n):
rangeMin = dataMat[:, i].min()
rangeMax = dataMat[:, i].max()
# print 'rangeMin=%s, rangeMax=%s' % (rangeMin, rangeMax)
# 计算每一份的元素个数
stepSize = (rangeMax-rangeMin)/numSteps
# 分成-1numSteps= 1+numSteps份, 加本身是需要+1的
for j in range(-1, int(numSteps)+1):
# go over less than and greater than
for inequal in ['lt', 'gt']:
# 如果是-1那么得到rangeMin-stepSize; 如果是numSteps那么得到rangeMax
threshVal = (rangeMin + float(j) * stepSize)
# 对单层决策树进行简单分类
predictedVals = stumpClassify(dataMat, i, threshVal, inequal)
# print predictedVals
errArr = mat(ones((m, 1)))
# 正确为0错误为1
errArr[predictedVals == labelMat] = 0
# 计算 平均每个特征的概率0.2*错误概率的总和为多少,就知道错误率多高
# calc total error multiplied by D
weightedError = D.T*errArr
'''
dim 表示 feature列
threshVal 表示树的分界值
inequal 表示计算树左右颠倒的错误率的情况
weightedError 表示整体结果的错误率
'''
# print "split: dim %d, thresh %.2f, thresh ineqal: %s, the weighted error is %.3f" % (i, threshVal, inequal, weightedError)
if weightedError < minError:
minError = weightedError
bestClasEst = predictedVals.copy()
bestStump['dim'] = i
bestStump['thresh'] = threshVal
bestStump['ineq'] = inequal
return bestStump, minError, bestClasEst
def adaBoostTrainDS(dataArr, labelArr, numIt=40):
weakClassArr = []
m = shape(dataArr)[0]
# 初始化 init D to all equal
D = mat(ones((m, 1))/m)
aggClassEst = mat(zeros((m, 1)))
for i in range(numIt):
# build Stump
bestStump, error, classEst = buildStump(dataArr, labelArr, D)
# print "D:", D.T
# calc alpha, throw in max(error,eps) to account for error=0
alpha = float(0.5*log((1.0-error)/max(error, 1e-16)))
bestStump['alpha'] = alpha
# store Stump Params in Array
weakClassArr.append(bestStump)
# print "alpha=%s, classEst=%s, bestStump=%s, error=%s " % (alpha, classEst.T, bestStump, error)
# -1主要是下面求e的-alpha次方 如果判断正确乘积为1否则为-1这样就可以算出分类的情况了
expon = multiply(-1*alpha*mat(labelArr).T, classEst)
# print 'expon=', -1*alpha*mat(labelArr).T, classEst, expon
# 计算e的expon次方然后计算得到一个综合的概率的值
# 结果发现: 正确的alpha的权重值变小了错误的变大了。也就说D里面分类的权重值变了。可以举例验证假设alpha=0.6,什么的)
D = multiply(D, exp(expon))
D = D/D.sum()
print "D: ", D.T
# 计算分类结果的值,在上一轮结果的基础上,进行加和操作
# calc training error of all classifiers, if this is 0 quit for loop early (use break)
aggClassEst += alpha*classEst
print "aggClassEst: ", aggClassEst.T
# sign 判断正为1 0为0 负为-1通过最终加和的权重值判断符号。
# 结果为:错误的样本标签集合,因为是 !=,那么结果就是0 正, 1 负
aggErrors = multiply(sign(aggClassEst) != mat(labelArr).T, ones((m, 1)))
errorRate = aggErrors.sum()/m
print "total error=%s " % (errorRate)
if errorRate == 0.0:
break
return weakClassArr, aggClassEst
if __name__ == "__main__":
dataArr, labelArr = loadSimpData()
print '-----\n', dataArr, '\n', labelArr
# D表示最初对1进行均分为5份平均每一个初始的概率都为0.2
D = mat(ones((5, 1))/5)
# print '-----', D
# print buildStump(dataArr, labelArr, D)
weakClassArr, aggClassEst = adaBoostTrainDS(dataArr, labelArr, 9)
print weakClassArr
def loadDataSet(fileName): #general function to parse tab -delimited floats
numFeat = len(open(fileName).readline().split('\t')) #get number of fields
dataArr = []
labelArr = []
fr = open(fileName)
for line in fr.readlines():
lineArr = []
curLine = line.strip().split('\t')
for i in range(numFeat-1):
lineArr.append(float(curLine[i]))
dataArr.append(lineArr)
labelArr.append(float(curLine[-1]))
return dataArr, labelArr
def adaClassify(datToClass,classifierArr):
dataMatrix = mat(datToClass)#do stuff similar to last aggClassEst in adaBoostTrainDS
m = shape(dataMatrix)[0]
aggClassEst = mat(zeros((m,1)))
for i in range(len(classifierArr)):
classEst = stumpClassify(dataMatrix,classifierArr[i]['dim'],\
classifierArr[i]['thresh'],\
classifierArr[i]['ineq'])#call stump classify
aggClassEst += classifierArr[i]['alpha']*classEst
print aggClassEst
return sign(aggClassEst)
def plotROC(predStrengths, classLabels):
import matplotlib.pyplot as plt
cur = (1.0,1.0) #cursor
ySum = 0.0 #variable to calculate AUC
numPosClas = sum(array(classLabels)==1.0)
yStep = 1/float(numPosClas); xStep = 1/float(len(classLabels)-numPosClas)
sortedIndicies = predStrengths.argsort()#get sorted index, it's reverse
fig = plt.figure()
fig.clf()
ax = plt.subplot(111)
#loop through all the values, drawing a line segment at each point
for index in sortedIndicies.tolist()[0]:
if classLabels[index] == 1.0:
delX = 0; delY = yStep;
else:
delX = xStep; delY = 0;
ySum += cur[1]
#draw line from cur to (cur[0]-delX,cur[1]-delY)
ax.plot([cur[0],cur[0]-delX],[cur[1],cur[1]-delY], c='b')
cur = (cur[0]-delX,cur[1]-delY)
ax.plot([0,1],[0,1],'b--')
plt.xlabel('False positive rate'); plt.ylabel('True positive rate')
plt.title('ROC curve for AdaBoost horse colic detection system')
ax.axis([0,1,0,1])
plt.show()
print "the Area Under the Curve is: ",ySum*xStep