mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-13 07:15:26 +08:00
更新完:SVM。手写识别案例
This commit is contained in:
@@ -66,6 +66,7 @@ def kernelTrans(X, A, kTup): # calc the kernel or transform data to a higher di
|
||||
for j in range(m):
|
||||
deltaRow = X[j, :] - A
|
||||
K[j] = deltaRow * deltaRow.T
|
||||
# 径向基函数的高斯版本
|
||||
K = exp(K / (-1 * kTup[1] ** 2)) # divide in NumPy is element-wise not matrix like Matlab
|
||||
else:
|
||||
raise NameError('Houston We Have a Problem -- That Kernel is not recognized')
|
||||
@@ -360,6 +361,100 @@ def calcWs(alphas, dataArr, classLabels):
|
||||
return w
|
||||
|
||||
|
||||
def testRbf(k1=1.3):
|
||||
dataArr, labelArr = loadDataSet('input/6.SVM/testSetRBF.txt')
|
||||
b, alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) # C=200 important
|
||||
datMat = mat(dataArr)
|
||||
labelMat = mat(labelArr).transpose()
|
||||
svInd = nonzero(alphas.A > 0)[0]
|
||||
sVs = datMat[svInd] # get matrix of only support vectors
|
||||
labelSV = labelMat[svInd]
|
||||
print("there are %d Support Vectors" % shape(sVs)[0])
|
||||
m, n = shape(datMat)
|
||||
errorCount = 0
|
||||
for i in range(m):
|
||||
kernelEval = kernelTrans(sVs, datMat[i, :], ('rbf', k1))
|
||||
|
||||
# 和这个svm-simple类似: fXi = float(multiply(alphas, labelMat).T*(dataMatrix*dataMatrix[i, :].T)) + b
|
||||
predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
|
||||
if sign(predict) != sign(labelArr[i]):
|
||||
errorCount += 1
|
||||
print("the training error rate is: %f" % (float(errorCount) / m))
|
||||
|
||||
dataArr, labelArr = loadDataSet('input/6.SVM/testSetRBF2.txt')
|
||||
errorCount = 0
|
||||
datMat = mat(dataArr)
|
||||
labelMat = mat(labelArr).transpose()
|
||||
m, n = shape(datMat)
|
||||
for i in range(m):
|
||||
kernelEval = kernelTrans(sVs, datMat[i, :], ('rbf', k1))
|
||||
predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
|
||||
if sign(predict) != sign(labelArr[i]):
|
||||
errorCount += 1
|
||||
print("the test error rate is: %f" % (float(errorCount) / m))
|
||||
|
||||
|
||||
def img2vector(filename):
|
||||
returnVect = zeros((1, 1024))
|
||||
fr = open(filename)
|
||||
for i in range(32):
|
||||
lineStr = fr.readline()
|
||||
for j in range(32):
|
||||
returnVect[0, 32 * i + j] = int(lineStr[j])
|
||||
return returnVect
|
||||
|
||||
|
||||
def loadImages(dirName):
|
||||
from os import listdir
|
||||
hwLabels = []
|
||||
print(dirName)
|
||||
trainingFileList = listdir(dirName) # load the training set
|
||||
m = len(trainingFileList)
|
||||
trainingMat = zeros((m, 1024))
|
||||
for i in range(m):
|
||||
fileNameStr = trainingFileList[i]
|
||||
fileStr = fileNameStr.split('.')[0] # take off .txt
|
||||
classNumStr = int(fileStr.split('_')[0])
|
||||
if classNumStr == 9:
|
||||
hwLabels.append(-1)
|
||||
else:
|
||||
hwLabels.append(1)
|
||||
trainingMat[i, :] = img2vector('%s/%s' % (dirName, fileNameStr))
|
||||
return trainingMat, hwLabels
|
||||
|
||||
|
||||
def testDigits(kTup=('rbf', 10)):
|
||||
|
||||
# 1. 导入训练数据
|
||||
dataArr, labelArr = loadImages('input/6.SVM/trainingDigits')
|
||||
b, alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
|
||||
datMat = mat(dataArr)
|
||||
labelMat = mat(labelArr).transpose()
|
||||
svInd = nonzero(alphas.A > 0)[0]
|
||||
sVs = datMat[svInd]
|
||||
labelSV = labelMat[svInd]
|
||||
print("there are %d Support Vectors" % shape(sVs)[0])
|
||||
m, n = shape(datMat)
|
||||
errorCount = 0
|
||||
for i in range(m):
|
||||
kernelEval = kernelTrans(sVs, datMat[i, :], kTup)
|
||||
predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
|
||||
if sign(predict) != sign(labelArr[i]): errorCount += 1
|
||||
print("the training error rate is: %f" % (float(errorCount) / m))
|
||||
|
||||
# 2. 导入测试数据
|
||||
dataArr, labelArr = loadImages('input/6.SVM/testDigits')
|
||||
errorCount = 0
|
||||
datMat = mat(dataArr)
|
||||
labelMat = mat(labelArr).transpose()
|
||||
m, n = shape(datMat)
|
||||
for i in range(m):
|
||||
kernelEval = kernelTrans(sVs, datMat[i, :], kTup)
|
||||
predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
|
||||
if sign(predict) != sign(labelArr[i]): errorCount += 1
|
||||
print("the test error rate is: %f" % (float(errorCount) / m))
|
||||
|
||||
|
||||
def plotfig_SVM(xArr, yArr, ws, b, alphas):
|
||||
"""
|
||||
参考地址:
|
||||
@@ -400,134 +495,28 @@ def plotfig_SVM(xArr, yArr, ws, b, alphas):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# 获取特征和目标变量
|
||||
dataArr, labelArr = loadDataSet('input/6.SVM/testSet.txt')
|
||||
# print labelArr
|
||||
|
||||
# b是常量值, alphas是拉格朗日乘子
|
||||
b, alphas = smoP(dataArr, labelArr, 0.6, 0.001, 40)
|
||||
print '/n/n/n'
|
||||
print 'b=', b
|
||||
print 'alphas[alphas>0]=', alphas[alphas > 0]
|
||||
print 'shape(alphas[alphas > 0])=', shape(alphas[alphas > 0])
|
||||
for i in range(100):
|
||||
if alphas[i] > 0:
|
||||
print dataArr[i], labelArr[i]
|
||||
# 画图
|
||||
ws = calcWs(alphas, dataArr, labelArr)
|
||||
plotfig_SVM(dataArr, labelArr, ws, b, alphas)
|
||||
# # 无核函数的测试
|
||||
# # 获取特征和目标变量
|
||||
# dataArr, labelArr = loadDataSet('input/6.SVM/testSet.txt')
|
||||
# # print labelArr
|
||||
|
||||
# # b是常量值, alphas是拉格朗日乘子
|
||||
# b, alphas = smoP(dataArr, labelArr, 0.6, 0.001, 40)
|
||||
# print '/n/n/n'
|
||||
# print 'b=', b
|
||||
# print 'alphas[alphas>0]=', alphas[alphas > 0]
|
||||
# print 'shape(alphas[alphas > 0])=', shape(alphas[alphas > 0])
|
||||
# for i in range(100):
|
||||
# if alphas[i] > 0:
|
||||
# print dataArr[i], labelArr[i]
|
||||
# # 画图
|
||||
# ws = calcWs(alphas, dataArr, labelArr)
|
||||
# plotfig_SVM(dataArr, labelArr, ws, b, alphas)
|
||||
|
||||
# # 有核函数的测试
|
||||
# testRbf(1)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def testRbf(k1=1.3):
|
||||
dataArr, labelArr = loadDataSet('testSetRBF.txt')
|
||||
b, alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) # C=200 important
|
||||
datMat = mat(dataArr)
|
||||
labelMat = mat(labelArr).transpose()
|
||||
svInd = nonzero(alphas.A > 0)[0]
|
||||
sVs = datMat[svInd] # get matrix of only support vectors
|
||||
labelSV = labelMat[svInd]
|
||||
print("there are %d Support Vectors" % shape(sVs)[0])
|
||||
m, n = shape(datMat)
|
||||
errorCount = 0
|
||||
for i in range(m):
|
||||
kernelEval = kernelTrans(sVs, datMat[i, :], ('rbf', k1))
|
||||
predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
|
||||
if sign(predict) != sign(labelArr[i]): errorCount += 1
|
||||
print("the training error rate is: %f" % (float(errorCount) / m))
|
||||
dataArr, labelArr = loadDataSet('testSetRBF2.txt')
|
||||
errorCount = 0
|
||||
datMat = mat(dataArr)
|
||||
labelMat = mat(labelArr).transpose()
|
||||
m, n = shape(datMat)
|
||||
for i in range(m):
|
||||
kernelEval = kernelTrans(sVs, datMat[i, :], ('rbf', k1))
|
||||
predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
|
||||
if sign(predict) != sign(labelArr[i]): errorCount += 1
|
||||
print("the test error rate is: %f" % (float(errorCount) / m))
|
||||
|
||||
|
||||
def img2vector(filename):
|
||||
returnVect = zeros((1, 1024))
|
||||
fr = open(filename)
|
||||
for i in range(32):
|
||||
lineStr = fr.readline()
|
||||
for j in range(32):
|
||||
returnVect[0, 32 * i + j] = int(lineStr[j])
|
||||
return returnVect
|
||||
|
||||
|
||||
def loadImages(dirName):
|
||||
from os import listdir
|
||||
hwLabels = []
|
||||
print(dirName)
|
||||
trainingFileList = listdir(dirName) # load the training set
|
||||
m = len(trainingFileList)
|
||||
trainingMat = zeros((m, 1024))
|
||||
for i in range(m):
|
||||
fileNameStr = trainingFileList[i]
|
||||
fileStr = fileNameStr.split('.')[0] # take off .txt
|
||||
classNumStr = int(fileStr.split('_')[0])
|
||||
if classNumStr == 9:
|
||||
hwLabels.append(-1)
|
||||
else:
|
||||
hwLabels.append(1)
|
||||
trainingMat[i, :] = img2vector('%s/%s' % (dirName, fileNameStr))
|
||||
return trainingMat, hwLabels
|
||||
|
||||
|
||||
def testDigits(kTup=('rbf', 10)):
|
||||
dataArr, labelArr = loadImages('trainingDigits')
|
||||
b, alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
|
||||
datMat = mat(dataArr)
|
||||
labelMat = mat(labelArr).transpose()
|
||||
svInd = nonzero(alphas.A > 0)[0]
|
||||
sVs = datMat[svInd]
|
||||
labelSV = labelMat[svInd]
|
||||
print("there are %d Support Vectors" % shape(sVs)[0])
|
||||
m, n = shape(datMat)
|
||||
errorCount = 0
|
||||
for i in range(m):
|
||||
kernelEval = kernelTrans(sVs, datMat[i, :], kTup)
|
||||
predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
|
||||
if sign(predict) != sign(labelArr[i]): errorCount += 1
|
||||
print("the training error rate is: %f" % (float(errorCount) / m))
|
||||
dataArr, labelArr = loadImages('testDigits')
|
||||
errorCount = 0
|
||||
datMat = mat(dataArr)
|
||||
labelMat = mat(labelArr).transpose()
|
||||
m, n = shape(datMat)
|
||||
for i in range(m):
|
||||
kernelEval = kernelTrans(sVs, datMat[i, :], kTup)
|
||||
predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
|
||||
if sign(predict) != sign(labelArr[i]): errorCount += 1
|
||||
print("the test error rate is: %f" % (float(errorCount) / m))
|
||||
# 项目实战
|
||||
# 示例:手写识别问题回顾
|
||||
testDigits(('rbf', 20))
|
||||
|
||||
Reference in New Issue
Block a user