diff --git a/docs/3.决策树.md b/docs/3.决策树.md
index f91b40bf..4a2db238 100644
--- a/docs/3.决策树.md
+++ b/docs/3.决策树.md
@@ -1,5 +1,6 @@
# 3) 决策树
+
* 决策树是什么?
* 顾名思义,是一种树,一种依托于策略抉择而建立起来的树。
@@ -17,7 +18,8 @@
* 划分数据集的最大原则是:将无序的数据变得更加有序。
* 集合信息的度量称为`香农熵`或者简称`熵`(名字来源于信息论之父`克劳德·香农`)
* 公式:
- * l(x_i) = -log_2 P(x_i)
- *
+ * \\(p(x_i)\\) 表示该label分类的概率
+ * \\(l(x_i) = - \log_2p(x_i)\\) 表示符号\\(x_i\\)的信息定义
+ * \\(H = -\sum_{i=0}^np(x_i)\log_2p(x_i)\\) 表示香农熵,用于计算信息熵
* 基尼不纯度(Gini impurity) [本书不做过多的介绍]
* 简单来说:就是从一个数据集中随机选取子项,度量其被错误分类到其他分组里的概率。
diff --git a/src/python/03.DecisionTree.py b/src/python/03.DecisionTree/DecisionTree.py
similarity index 54%
rename from src/python/03.DecisionTree.py
rename to src/python/03.DecisionTree/DecisionTree.py
index e958eef8..c7920bd1 100644
--- a/src/python/03.DecisionTree.py
+++ b/src/python/03.DecisionTree/DecisionTree.py
@@ -9,6 +9,7 @@ Decision Tree Source Code for Machine Learning in Action Ch. 3
'''
from math import log
import operator
+import DecisionTreePlot as dtPlot
def createDataSet():
@@ -26,13 +27,18 @@ def createDataSet():
[1, 0, 'no'],
[0, 1, 'no'],
[0, 1, 'no']]
+ # dataSet = [['yes'],
+ # ['yes'],
+ # ['no'],
+ # ['no'],
+ # ['no']]
labels = ['no surfacing', 'flippers']
# change to discrete values
return dataSet, labels
def calcShannonEnt(dataSet):
- """calcShannonEnt(calculate Shannon entropy 计算香农熵)
+ """calcShannonEnt(calculate Shannon entropy 计算label分类标签的香农熵)
Args:
dataSet 数据集
@@ -61,83 +67,136 @@ def calcShannonEnt(dataSet):
prob = float(labelCounts[key])/numEntries
# log base 2
shannonEnt -= prob * log(prob, 2)
- print '---', prob, prob * log(prob, 2), shannonEnt
+ # print '---', prob, prob * log(prob, 2), shannonEnt
return shannonEnt
def splitDataSet(dataSet, axis, value):
+ """splitDataSet(通过遍历dataSet数据集,求出axis对应的colnum列的值为value的行)
+
+ Args:
+ dataSet 数据集
+ axis 表示每一行的axis列
+ value 表示axis列对应的value值
+ Returns:
+ axis列为value的数据集【该数据集需要排除axis列】
+ Raises:
+
+ """
retDataSet = []
for featVec in dataSet:
+ # axis列为value的数据集【该数据集需要排除axis列】
if featVec[axis] == value:
# chop out axis used for splitting
reducedFeatVec = featVec[:axis]
+ '''
+ 请百度查询一下: extend和append的区别
+ '''
reducedFeatVec.extend(featVec[axis+1:])
+ # 收集结果值 axis列为value的行【该行需要排除axis列】
retDataSet.append(reducedFeatVec)
return retDataSet
def chooseBestFeatureToSplit(dataSet):
- # the last column is used for the labels
+ """chooseBestFeatureToSplit(选择最好的特征)
+
+ Args:
+ dataSet 数据集
+ Returns:
+ bestFeature 最优的特征列
+ Raises:
+
+ """
+ # 求第一行有多少列的 Feature
numFeatures = len(dataSet[0]) - 1
+ # label的信息熵
baseEntropy = calcShannonEnt(dataSet)
- bestInfoGain = 0.0
- bestFeature = -1
+ # 最优的信息增益值, 和最优的Featurn编号
+ bestInfoGain, bestFeature = 0.0, -1
# iterate over all the features
for i in range(numFeatures):
# create a list of all the examples of this feature
+ # 获取每一个feature的list集合
featList = [example[i] for example in dataSet]
# get a set of unique values
- uniqueVals = set(featList)
+ # 获取剔重后的集合
+ uniqueVals = set(featList)
+ # 创建一个临时的信息熵
newEntropy = 0.0
+ # 遍历某一列的value集合,计算该列的信息熵
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet)/float(len(dataSet))
- newEntropy += prob * calcShannonEnt(subDataSet)
- infoGain = baseEntropy - newEntropy #calculate the info gain; ie reduction in entropy
- if (infoGain > bestInfoGain): #compare this to the best gain so far
- bestInfoGain = infoGain #if better than current best, set to best
+ newEntropy += prob * calcShannonEnt(subDataSet)
+ # 计算label的信息熵和每个特征的信息熵 的增益值,如果增益值大于最大值,那么效果越好
+ infoGain = baseEntropy - newEntropy
+ if (infoGain > bestInfoGain):
+ bestInfoGain = infoGain
bestFeature = i
- return bestFeature #returns an integer
+ return bestFeature
def majorityCnt(classList):
+ """majorityCnt(选择出线次数最多的一个结果)
+
+ Args:
+ classList label列的集合
+ Returns:
+ bestFeature 最优的特征列
+ Raises:
+
+ """
classCount = {}
for vote in classList:
if vote not in classCount.keys():
classCount[vote] = 0
classCount[vote] += 1
+ # 倒叙排列classCount得到一个字典集合,然后取出第一个就是结果(yes/no)
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
+ # print 'sortedClassCount:', sortedClassCount
return sortedClassCount[0][0]
def createTree(dataSet, labels):
classList = [example[-1] for example in dataSet]
+ # 如果数据集的最后一列的第一个值出现的次数=整个集合的数量,也就说只有一个类别,就只直接返回结果就行
if classList.count(classList[0]) == len(classList):
- return classList[0]#stop splitting when all of the classes are equal
- if len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSet
+ return classList[0]
+ # 如果数据集只有1列,那么最初出现label次数最多的一类,作为结果
+ if len(dataSet[0]) == 1:
return majorityCnt(classList)
+
+ # 选择最优的列,得到最有列对应的label含义
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
- myTree = {bestFeatLabel:{}}
+ # 初始化myTree
+ myTree = {bestFeatLabel: {}}
# 注:labels列表是可变对象,在PYTHON函数中作为参数时传址引用,能够被全局修改
# 所以这行代码导致函数外的同名变量被删除了元素,造成例句无法执行,提示'no surfacing' is not in list
del(labels[bestFeat])
+ # 取出最优列,然后它的branch做分类
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
- subLabels = labels[:] #copy all of labels, so trees don't mess up existing labels
- myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
+ # 求出剩余的标签label
+ subLabels = labels[:]
+ myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
+ # print 'myTree', value, myTree
return myTree
def classify(inputTree, featLabels, testVec):
- # 获取tree的第一个节点值
- print '1111', inputTree.keys()
+ # 获取tree的第一个节点对应的key值
firstStr = inputTree.keys()[0]
+ # 获取第一个节点对应的value值
secondDict = inputTree[firstStr]
+ # 判断根节点的索引值,然后根据testVec来获取对应的树分枝位置
featIndex = featLabels.index(firstStr)
key = testVec[featIndex]
valueOfFeat = secondDict[key]
+ print '+++', firstStr, 'xxx', secondDict, '---', key, '>>>', valueOfFeat
+ # 判断分枝是否结束
if isinstance(valueOfFeat, dict):
classLabel = classify(valueOfFeat, featLabels, testVec)
else:
@@ -145,7 +204,7 @@ def classify(inputTree, featLabels, testVec):
return classLabel
-def storeTree(inputTree,filename):
+def storeTree(inputTree, filename):
import pickle
fw = open(filename, 'w')
pickle.dump(inputTree, fw)
@@ -162,11 +221,23 @@ if __name__ == "__main__":
# 1.创建数据和结果标签
myDat, labels = createDataSet()
- print myDat, labels
+ # print myDat, labels
- calcShannonEnt(myDat)
+ # # 计算label分类标签的香农熵
+ # calcShannonEnt(myDat)
- # import copy
- # myTree = createTree(myDat, copy.deepcopy(labels))
- # print myTree
+ # # 求第0列 为 1/0的列的数据集【排除第0列】
+ # print '1---', splitDataSet(myDat, 0, 1)
+ # print '0---', splitDataSet(myDat, 0, 0)
+
+ # # 计算最好的信息增益的列
+ # print chooseBestFeatureToSplit(myDat)
+
+ import copy
+ myTree = createTree(myDat, copy.deepcopy(labels))
+ print myTree
+ # [1, 1]表示要取的分支上的节点位置,对应的结果值
# print classify(myTree, labels, [1, 1])
+
+ # 画图可视化展现
+ dtPlot.createPlot(myTree)
diff --git a/src/python/03.DecisionTree/DecisionTreePlot.py b/src/python/03.DecisionTree/DecisionTreePlot.py
new file mode 100644
index 00000000..cf11e382
--- /dev/null
+++ b/src/python/03.DecisionTree/DecisionTreePlot.py
@@ -0,0 +1,132 @@
+#!/usr/bin/python
+# coding:utf8
+
+'''
+Created on Oct 14, 2010
+Update on 2017-02-27
+Decision Tree Source Code for Machine Learning in Action Ch. 3
+@author: Peter Harrington/jiangzhonglian
+'''
+import matplotlib.pyplot as plt
+
+# 定义文本框 和 箭头格式 【 sawtooth 波浪方框, round4 矩形方框 , fc表示字体颜色的深浅 0.1~0.9 依次变浅,没错是变浅】
+decisionNode = dict(boxstyle="sawtooth", fc="0.8")
+leafNode = dict(boxstyle="round4", fc="0.8")
+arrow_args = dict(arrowstyle="<-")
+
+
+def getNumLeafs(myTree):
+ numLeafs = 0
+ firstStr = myTree.keys()[0]
+ secondDict = myTree[firstStr]
+ # 根节点开始遍历
+ for key in secondDict.keys():
+ # 判断子节点是否为dict, 不是+1
+ if type(secondDict[key]).__name__ == 'dict':
+ numLeafs += getNumLeafs(secondDict[key])
+ else:
+ numLeafs += 1
+ return numLeafs
+
+
+def getTreeDepth(myTree):
+ maxDepth = 0
+ firstStr = myTree.keys()[0]
+ secondDict = myTree[firstStr]
+ # 根节点开始遍历
+ for key in secondDict.keys():
+ # 判断子节点是不是dict, 求分枝的深度
+ if type(secondDict[key]).__name__ == 'dict':
+ thisDepth = 1 + getTreeDepth(secondDict[key])
+ else:
+ thisDepth = 1
+ # 记录最大的分支深度
+ if thisDepth > maxDepth:
+ maxDepth = thisDepth
+ return maxDepth
+
+
+def plotNode(nodeTxt, centerPt, parentPt, nodeType):
+ createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction', xytext=centerPt, textcoords='axes fraction', va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)
+
+
+def plotMidText(cntrPt, parentPt, txtString):
+ xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
+ yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
+ createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)
+
+
+def plotTree(myTree, parentPt, nodeTxt):
+ # 获取叶子节点的数量
+ numLeafs = getNumLeafs(myTree)
+ # 获取树的深度
+ # depth = getTreeDepth(myTree)
+
+ # 找出第1个中心点的位置,然后与 parentPt定点进行划线
+ cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
+ # print cntrPt
+ # 并打印输入对应的文字
+ plotMidText(cntrPt, parentPt, nodeTxt)
+
+ firstStr = myTree.keys()[0]
+ # 可视化Node分支点
+ plotNode(firstStr, cntrPt, parentPt, decisionNode)
+ # 根节点的值
+ secondDict = myTree[firstStr]
+ # y值 = 最高点-层数的高度[第二个节点位置]
+ plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
+ for key in secondDict.keys():
+ # 判断该节点是否是Node节点
+ if type(secondDict[key]).__name__=='dict':
+ # 如果是就递归调用[recursion]
+ plotTree(secondDict[key],cntrPt,str(key))
+ else:
+ # 如果不是,就在原来节点一半的地方找到节点的坐标
+ plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
+ # 可视化该节点位置
+ plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
+ # 并打印输入对应的文字
+ plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
+ # plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
+
+
+def createPlot(inTree):
+ # 创建一个figure的模版
+ fig = plt.figure(1, facecolor='green')
+ fig.clf()
+
+ axprops = dict(xticks=[], yticks=[])
+ # 表示创建一个1行,1列的图,createPlot.ax1 为第 1 个子图,
+ createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
+
+ plotTree.totalW = float(getNumLeafs(inTree))
+ plotTree.totalD = float(getTreeDepth(inTree))
+ # 半个节点的长度
+ plotTree.xOff = -0.5/plotTree.totalW
+ plotTree.yOff = 1.0
+ plotTree(inTree, (0.5, 1.0), '')
+ plt.show()
+
+
+# # 测试画图
+# def createPlot():
+# fig = plt.figure(1, facecolor='white')
+# fig.clf()
+# # ticks for demo puropses
+# createPlot.ax1 = plt.subplot(111, frameon=False)
+# plotNode('a decision node', (0.5, 0.1), (0.1, 0.5), decisionNode)
+# plotNode('a leaf node', (0.8, 0.1), (0.3, 0.8), leafNode)
+# plt.show()
+
+
+# 测试数据集
+def retrieveTree(i):
+ listOfTrees =[
+ {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
+ {'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
+ ]
+ return listOfTrees[i]
+
+
+myTree = retrieveTree(0)
+createPlot(myTree)