更新 adaboost sklearn测试案例

This commit is contained in:
jiangzhonglian
2017-08-15 18:31:34 +08:00
parent 357b922758
commit af6229cead
3 changed files with 159 additions and 66 deletions

View File

@@ -1,6 +1,5 @@
#!/usr/bin/python
# coding:utf8
"""
Created on 2017-07-10
Updated on 2017-07-10
@@ -8,80 +7,55 @@ Updated on 2017-07-10
《机器学习实战》更新地址https://github.com/apachecn/MachineLearning
sklearn-AdaBoost译文链接: http://cwiki.apachecn.org/pages/viewpage.action?pageId=10813457
"""
import matplotlib.pyplot as plt
# importing necessary libraries
import numpy as np
from sklearn.datasets import make_gaussian_quantiles
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn import metrics
from sklearn.ensemble import AdaBoostRegressor
from sklearn.tree import DecisionTreeRegressor
print(__doc__)
# Construct dataset
X1, y1 = make_gaussian_quantiles(cov=2.,
n_samples=200, n_features=2,
n_classes=2, random_state=1)
X2, y2 = make_gaussian_quantiles(mean=(3, 3), cov=1.5,
n_samples=300, n_features=2,
n_classes=2, random_state=1)
X = np.concatenate((X1, X2))
y = np.concatenate((y1, - y2 + 1))
# Create and fit an AdaBoosted decision tree
bdt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1),
algorithm="SAMME",
n_estimators=200)
# Create the dataset
rng = np.random.RandomState(1)
X = np.linspace(0, 6, 100)[:, np.newaxis]
y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0])
# dataArr, labelArr = loadDataSet("input/7.AdaBoost/horseColicTraining2.txt")
bdt.fit(X, y)
plot_colors = "br"
plot_step = 0.02
class_names = "AB"
# Fit regression model
regr_1 = DecisionTreeRegressor(max_depth=4)
regr_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4), n_estimators=300, random_state=rng)
plt.figure(figsize=(10, 5))
regr_1.fit(X, y)
regr_2.fit(X, y)
# Plot the decision boundaries
plt.subplot(121)
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),
np.arange(y_min, y_max, plot_step))
# Predict
y_1 = regr_1.predict(X)
y_2 = regr_2.predict(X)
Z = bdt.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)
plt.axis("tight")
# Plot the training points
for i, n, c in zip(range(2), class_names, plot_colors):
idx = np.where(y == i)
plt.scatter(X[idx, 0], X[idx, 1],
c=c, cmap=plt.cm.Paired,
label="Class %s" % n)
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.legend(loc='upper right')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Decision Boundary')
# Plot the two-class decision scores
twoclass_output = bdt.decision_function(X)
plot_range = (twoclass_output.min(), twoclass_output.max())
plt.subplot(122)
for i, n, c in zip(range(2), class_names, plot_colors):
plt.hist(twoclass_output[y == i],
bins=10,
range=plot_range,
facecolor=c,
label='Class %s' % n,
alpha=.5)
x1, x2, y1, y2 = plt.axis()
plt.axis((x1, x2, y1, y2 * 1.2))
plt.legend(loc='upper right')
plt.ylabel('Samples')
plt.xlabel('Score')
plt.title('Decision Scores')
plt.tight_layout()
plt.subplots_adjust(wspace=0.35)
# Plot the results
plt.figure()
plt.scatter(X, y, c="k", label="training samples")
plt.plot(X, y_1, c="g", label="n_estimators=1", linewidth=2)
plt.plot(X, y_2, c="r", label="n_estimators=300", linewidth=2)
plt.xlabel("data")
plt.ylabel("target")
plt.title("Boosted Decision Tree Regression")
plt.legend()
plt.show()
print 'y---', type(y[0]), len(y), y[:4]
print 'y_1---', type(y_1[0]), len(y_1), y_1[:4]
print 'y_2---', type(y_2[0]), len(y_2), y_2[:4]
# 适合2分类
y_true = np.array([0, 0, 1, 1])
y_scores = np.array([0.1, 0.4, 0.35, 0.8])
print 'y_scores---', type(y_scores[0]), len(y_scores), y_scores
print metrics.roc_auc_score(y_true, y_scores)
# print "-" * 100
# print metrics.roc_auc_score(y[:1], y_2[:1])