mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-10 05:45:40 +08:00
更新决策树的内容,做ppt
This commit is contained in:
@@ -51,7 +51,7 @@ def predict_train(x_train, y_train):
|
||||
return y_pre, clf
|
||||
|
||||
|
||||
def show_precision_recall(x, clf, y_train, y_pre):
|
||||
def show_precision_recall(x, y, clf, y_train, y_pre):
|
||||
'''
|
||||
准确率与召回率
|
||||
参考链接: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_curve.html#sklearn.metrics.precision_recall_curve
|
||||
@@ -110,7 +110,7 @@ if __name__ == '__main__':
|
||||
y_pre, clf = predict_train(x_train, y_train)
|
||||
|
||||
# 展现 准确率与召回率
|
||||
show_precision_recall(x, clf, y_train, y_pre)
|
||||
show_precision_recall(x, y, clf, y_train, y_pre)
|
||||
|
||||
# 可视化输出
|
||||
show_pdf(clf)
|
||||
|
||||
@@ -7,9 +7,9 @@ Update on 2017-02-27
|
||||
Decision Tree Source Code for Machine Learning in Action Ch. 3
|
||||
@author: Peter Harrington/jiangzhonglian
|
||||
'''
|
||||
from math import log
|
||||
import operator
|
||||
import DecisionTreePlot as dtPlot
|
||||
from math import log
|
||||
import decisionTreePlot as dtPlot
|
||||
|
||||
|
||||
def createDataSet():
|
||||
@@ -130,7 +130,9 @@ def chooseBestFeatureToSplit(dataSet):
|
||||
prob = len(subDataSet)/float(len(dataSet))
|
||||
newEntropy += prob * calcShannonEnt(subDataSet)
|
||||
# gain[信息增益] 值越大,意味着该分类提供的信息量越大,该特征对分类的不确定程度越小
|
||||
# 也就说: 列进行group分组后,对应的类别越多,信息量越大,那么香农熵越小,那么信息增益就越大,所以gain越大
|
||||
infoGain = baseEntropy - newEntropy
|
||||
# print 'infoGain=', infoGain, 'bestFeature=', i
|
||||
if (infoGain > bestInfoGain):
|
||||
bestInfoGain = infoGain
|
||||
bestFeature = i
|
||||
|
||||
@@ -128,5 +128,5 @@ def retrieveTree(i):
|
||||
return listOfTrees[i]
|
||||
|
||||
|
||||
myTree = retrieveTree(0)
|
||||
myTree = retrieveTree(1)
|
||||
createPlot(myTree)
|
||||
|
||||
50
src/python/09.RegTrees/RTSklearn.py
Normal file
50
src/python/09.RegTrees/RTSklearn.py
Normal file
@@ -0,0 +1,50 @@
|
||||
#!/usr/bin/python
|
||||
# coding:utf8
|
||||
|
||||
'''
|
||||
Created on 2017-03-10
|
||||
Update on 2017-03-10
|
||||
author: jiangzhonglian
|
||||
content: 回归树
|
||||
'''
|
||||
|
||||
print(__doc__)
|
||||
|
||||
|
||||
# Import the necessary modules and libraries
|
||||
import numpy as np
|
||||
from sklearn.tree import DecisionTreeRegressor
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
# Create a random dataset
|
||||
rng = np.random.RandomState(1)
|
||||
X = np.sort(5 * rng.rand(80, 1), axis=0)
|
||||
y = np.sin(X).ravel()
|
||||
print X, '\n\n\n-----------\n\n\n', y
|
||||
y[::5] += 3 * (0.5 - rng.rand(16))
|
||||
|
||||
|
||||
# Fit regression model
|
||||
regr_1 = DecisionTreeRegressor(max_depth=2, min_samples_leaf=5)
|
||||
regr_2 = DecisionTreeRegressor(max_depth=5, min_samples_leaf=5)
|
||||
regr_1.fit(X, y)
|
||||
regr_2.fit(X, y)
|
||||
|
||||
|
||||
# Predict
|
||||
X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
|
||||
y_1 = regr_1.predict(X_test)
|
||||
y_2 = regr_2.predict(X_test)
|
||||
|
||||
|
||||
# Plot the results
|
||||
plt.figure()
|
||||
plt.scatter(X, y, c="darkorange", label="data")
|
||||
plt.plot(X_test, y_1, color="cornflowerblue", label="max_depth=2", linewidth=2)
|
||||
plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=5", linewidth=2)
|
||||
plt.xlabel("data")
|
||||
plt.ylabel("target")
|
||||
plt.title("Decision Tree Regression")
|
||||
plt.legend()
|
||||
plt.show()
|
||||
@@ -7,14 +7,14 @@ Update on 2017-03-08
|
||||
Tree-Based Regression Methods Source Code for Machine Learning in Action Ch. 9
|
||||
@author: jiangzhonglian
|
||||
'''
|
||||
import regTrees
|
||||
from Tkinter import *
|
||||
from numpy import *
|
||||
import regTrees
|
||||
|
||||
import matplotlib
|
||||
matplotlib.use('TkAgg')
|
||||
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
|
||||
from matplotlib.figure import Figure
|
||||
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
|
||||
matplotlib.use('TkAgg')
|
||||
|
||||
|
||||
def test_widget_text(root):
|
||||
|
||||
Reference in New Issue
Block a user