mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-14 15:55:35 +08:00
修改图片和logistic回归的md文件
This commit is contained in:
@@ -5,7 +5,7 @@
|
||||
Created on Oct 27, 2010
|
||||
Update on 2017-05-18
|
||||
Logistic Regression Working Module
|
||||
@author: Peter Harrington/羊山
|
||||
@author: Peter Harrington/羊三/小瑶
|
||||
《机器学习实战》更新地址:https://github.com/apachecn/MachineLearning
|
||||
'''
|
||||
from numpy import *
|
||||
@@ -19,6 +19,7 @@ def loadDataSet(file_name):
|
||||
fr = open(file_name)
|
||||
for line in fr.readlines():
|
||||
lineArr = line.strip().split()
|
||||
# 将 X0 的值设为 1.0
|
||||
dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
|
||||
labelMat.append(int(lineArr[2]))
|
||||
return dataMat,labelMat
|
||||
@@ -29,33 +30,37 @@ def sigmoid(inX):
|
||||
|
||||
|
||||
# 正常的处理方案
|
||||
# 两个参数:第一个参数==> dataMatIn 是一个2维NumPy数组,每列分别代表每个不同的特征,每行则代表每个训练样本。
|
||||
# 第二个参数==> classLabels 是类别标签,它是一个 1*100 的行向量。为了便于矩阵计算,需要将该行向量转换为列向量,做法是将原向量转置,再将它赋值给labelMat。
|
||||
def gradAscent(dataMatIn, classLabels):
|
||||
# 转化为矩阵[[1,1,2],[1,1,2]....]
|
||||
dataMatrix = mat(dataMatIn) #convert to NumPy matrix
|
||||
dataMatrix = mat(dataMatIn) # 转换为 NumPy 矩阵
|
||||
# 转化为矩阵[[0,1,0,1,0,1.....]],并转制[[0],[1],[0].....]
|
||||
# transpose() 行列转制函数
|
||||
# 将行矩阵转化为列矩阵 => 矩阵的转置
|
||||
labelMat = mat(classLabels).transpose() #convert to NumPy matrix
|
||||
# m->数据量 n->特征数
|
||||
# transpose() 行列转置函数
|
||||
# 将行向量转化为列向量 => 矩阵的转置
|
||||
labelMat = mat(classLabels).transpose() # 首先将数组转换为 NumPy 矩阵,然后再将行向量转置为列向量
|
||||
# m->数据量,样本数 n->特征数
|
||||
m,n = shape(dataMatrix)
|
||||
# print m, n, '__'*10, shape(dataMatrix.transpose()), '__'*100
|
||||
# 步长
|
||||
# alpha代表向目标移动的步长
|
||||
alpha = 0.001
|
||||
# 迭代次数
|
||||
maxCycles = 500
|
||||
# 生成一个长度和特征数相同的矩阵,此处n为3 -> [[1],[1],[1]]
|
||||
# 回归系数
|
||||
# weights 代表回归系数, 此处的 ones((n,1)) 创建一个长度和特征数相同的矩阵,其中的数全部都是 1
|
||||
weights = ones((n,1))
|
||||
for k in range(maxCycles): #heavy on matrix operations
|
||||
# m*3的矩阵 * 3*1的单位矩阵 = m*1的矩阵
|
||||
# m*3 的矩阵 * 3*1 的单位矩阵 = m*1的矩阵
|
||||
# 那么乘上单位矩阵的意义,就代表:通过公式得到的理论值
|
||||
# 参考地址: 矩阵乘法的本质是什么? https://www.zhihu.com/question/21351965/answer/31050145
|
||||
# print 'dataMatrix====', dataMatrix
|
||||
# print 'weights====', weights
|
||||
# n*3 * 3*1 = n*1
|
||||
h = sigmoid(dataMatrix*weights) #matrix mult
|
||||
h = sigmoid(dataMatrix*weights) # 矩阵乘法
|
||||
# labelMat是实际值
|
||||
error = (labelMat - h) #vector subtraction
|
||||
error = (labelMat - h) # 向量相减
|
||||
# 0.001* (3*m)*(m*1) 表示在每一个列上的一个误差情况,最后得出 x1,x2,xn的系数的偏移量
|
||||
weights = weights + alpha * dataMatrix.transpose() * error #matrix mult
|
||||
weights = weights + alpha * dataMatrix.transpose() * error # 矩阵乘法,最后得到回归系数
|
||||
return array(weights)
|
||||
|
||||
|
||||
@@ -67,10 +72,12 @@ def stocGradAscent0(dataMatrix, classLabels):
|
||||
alpha = 0.01
|
||||
# n*1的矩阵
|
||||
# 函数ones创建一个全1的数组
|
||||
weights = ones(n) #initialize to all ones
|
||||
weights = ones(n) # 初始化长度为n的数组,元素全部为 1
|
||||
for i in range(m):
|
||||
# sum(dataMatrix[i]*weights)为了求 f(x)的值, f(x)=a1*x1+b2*x2+..+nn*xn
|
||||
# sum(dataMatrix[i]*weights)为了求 f(x)的值, f(x)=a1*x1+b2*x2+..+nn*xn,此处求出的 h 是一个具体的数值,而不是一个矩阵
|
||||
h = sigmoid(sum(dataMatrix[i]*weights))
|
||||
# print 'dataMatrix[i]===', dataMatrix[i]
|
||||
# 计算真实类别与预测类别之间的差值,然后按照该差值调整回归系数
|
||||
error = classLabels[i] - h
|
||||
# 0.01*(1*1)*(1*n)
|
||||
print weights, "*"*10 , dataMatrix[i], "*"*10 , error
|
||||
@@ -81,16 +88,17 @@ def stocGradAscent0(dataMatrix, classLabels):
|
||||
# 随机梯度上升算法(随机化)
|
||||
def stocGradAscent1(dataMatrix, classLabels, numIter=150):
|
||||
m,n = shape(dataMatrix)
|
||||
weights = ones(n) #initialize to all ones
|
||||
# 随机剃度, 循环150,观察是否收敛
|
||||
weights = ones(n) # 创建与列数相同的矩阵的系数矩阵,所有的元素都是1
|
||||
# 随机梯度, 循环150,观察是否收敛
|
||||
for j in range(numIter):
|
||||
# [0, 1, 2 .. m-1]
|
||||
dataIndex = range(m)
|
||||
for i in range(m):
|
||||
# i和j的不断增大,导致alpha的值不断减少,但是不为0
|
||||
alpha = 4/(1.0+j+i)+0.0001 #apha decreases with iteration, does not
|
||||
alpha = 4/(1.0+j+i)+0.0001 # alpha 会随着迭代不断减小,但永远不会减小到0,因为后边还有一个常数项0.0001
|
||||
# 随机产生一个 0~len()之间的一个值
|
||||
randIndex = int(random.uniform(0,len(dataIndex)))#go to 0 because of the constant
|
||||
# random.uniform(x, y) 方法将随机生成下一个实数,它在[x,y]范围内,x是这个范围内的最小值,y是这个范围内的最大值。
|
||||
randIndex = int(random.uniform(0,len(dataIndex)))
|
||||
# sum(dataMatrix[i]*weights)为了求 f(x)的值, f(x)=a1*x1+b2*x2+..+nn*xn
|
||||
h = sigmoid(sum(dataMatrix[randIndex]*weights))
|
||||
error = classLabels[randIndex] - h
|
||||
@@ -139,8 +147,8 @@ def main():
|
||||
dataArr = array(dataMat)
|
||||
# print dataArr
|
||||
# weights = gradAscent(dataArr, labelMat)
|
||||
# weights = stocGradAscent0(dataArr, labelMat)
|
||||
weights = stocGradAscent1(dataArr, labelMat)
|
||||
weights = stocGradAscent0(dataArr, labelMat)
|
||||
# weights = stocGradAscent1(dataArr, labelMat)
|
||||
# print '*'*30, weights
|
||||
|
||||
# 数据可视化
|
||||
|
||||
Reference in New Issue
Block a user