From 31f59dbec4566f0e085be1e0aad582c81ffc5674 Mon Sep 17 00:00:00 2001 From: jiangzhonglian Date: Tue, 14 Mar 2017 17:48:43 +0800 Subject: [PATCH 1/2] =?UTF-8?q?=E6=9B=B4=E6=96=B0CART=E5=9B=9E=E5=BD=92?= =?UTF-8?q?=E6=A0=91=E7=9A=84Sklearn=20=E5=92=8C=20=E5=88=A9=E7=94=A8AdaBo?= =?UTF-8?q?ost=E5=85=83=E7=AE=97=E6=B3=95=E6=8F=90=E9=AB=98=E5=88=86?= =?UTF-8?q?=E7=B1=BB=E7=9A=84md?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- docs/7.利用AdaBoost元算法提高分类.md | 26 ++++++++ src/python/09.RegTrees/RTSklearn.py | 97 ++++++++++++++++++++++------ 2 files changed, 102 insertions(+), 21 deletions(-) diff --git a/docs/7.利用AdaBoost元算法提高分类.md b/docs/7.利用AdaBoost元算法提高分类.md index e69de29b..a60e270a 100644 --- a/docs/7.利用AdaBoost元算法提高分类.md +++ b/docs/7.利用AdaBoost元算法提高分类.md @@ -0,0 +1,26 @@ + +# 7) 利用AdaBoost元算法提高分类 + +* 元算法(meta-algorithm) 或 集成方法(ensemble method) + * 概念:是对其他算法进行组合的一种形式。 + * 通俗来说: 当做重要决定时,大家可能都会考虑吸取多个专家而不只是一个人的意见。 + 机器学习处理问题时又何尝不是如此? 这就是元算法(meta-algorithm)背后的思想。 +* AdaBoost(adaptive boosting: 自适应boosting) + * 能否使用弱分类器和多个实例来构建一个强分类器? 这是一个非常有趣的理论问题。 + * 优点:泛化错误率低,易编码,可以应用在大部分分类器上,无参数调节。 + * 缺点:对离群点敏感。 + * 适用数据类型:数值型和标称型数据。 +* bagging:基于数据随机重抽样的分类起构造方法 + * 自举汇聚法(bootstrap aggregating),也称为bagging方法,是在从原始数据集选择S次后得到S个新数据集的一种技术。 + * 1. 新数据集和原数据集的大小相等。 + * 2. 每个数据集都是通过在原始数据集中随机选择一个样本来进行替换(替换:意味着可以多次选择同一个样本,也就有重复值)而得到的。 + * 3. 该算法作用的数据集就会得到S个分类器,与此同时,选择分类器投票结果中最多的类别作为最后的分类结果。 + * 4. 例如:随即森林(random forest) +* boosting + * boosting是一种与bagging很类似的技术。不论是boosting还是bagging当中,所使用的多个分类器的类型都是一致的。 + * 区别是什么? + * 1. bagging:不同的分类器是通过串形训练而获得的,每个新分类器斗根据已训练出的分类器的性能来进行训练。 + * 2. boosting:是通过集中关注被已有分类器错分的那些数据来获得新的分类器。 + * 3. 由于boosting分类的结果是基于所有分类器的加权求和结果的,因此boosting与bagging不太一样。 + * 4. bagging中的分类器权重是相等的,而boosting中的分类器权重并不相等,每个权重代表的是其对应分类器在上一轮迭代中的成功度。 + * 目前boosting方法最流行的版本是: AdaBoost。 diff --git a/src/python/09.RegTrees/RTSklearn.py b/src/python/09.RegTrees/RTSklearn.py index 72036a23..42e23b45 100644 --- a/src/python/09.RegTrees/RTSklearn.py +++ b/src/python/09.RegTrees/RTSklearn.py @@ -1,50 +1,105 @@ #!/usr/bin/python # coding:utf8 +# ''' +# Created on 2017-03-10 +# Update on 2017-03-10 +# author: jiangzhonglian +# content: 回归树 +# ''' + +# print(__doc__) + + +# # Import the necessary modules and libraries +# import numpy as np +# from sklearn.tree import DecisionTreeRegressor +# import matplotlib.pyplot as plt + + +# # Create a random dataset +# rng = np.random.RandomState(1) +# X = np.sort(5 * rng.rand(80, 1), axis=0) +# y = np.sin(X).ravel() +# print X, '\n\n\n-----------\n\n\n', y +# y[::5] += 3 * (0.5 - rng.rand(16)) + + +# # Fit regression model +# regr_1 = DecisionTreeRegressor(max_depth=2, min_samples_leaf=5) +# regr_2 = DecisionTreeRegressor(max_depth=5, min_samples_leaf=5) +# regr_1.fit(X, y) +# regr_2.fit(X, y) + + +# # Predict +# X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis] +# y_1 = regr_1.predict(X_test) +# y_2 = regr_2.predict(X_test) + + +# # Plot the results +# plt.figure() +# plt.scatter(X, y, c="darkorange", label="data") +# plt.plot(X_test, y_1, color="cornflowerblue", label="max_depth=2", linewidth=2) +# plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=5", linewidth=2) +# plt.xlabel("data") +# plt.ylabel("target") +# plt.title("Decision Tree Regression") +# plt.legend() +# plt.show() + + + + + + + + ''' Created on 2017-03-10 Update on 2017-03-10 author: jiangzhonglian -content: 回归树 +content: 模型树 ''' print(__doc__) +# Author: Noel Dawe +# +# License: BSD 3 clause -# Import the necessary modules and libraries +# importing necessary libraries import numpy as np -from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt +from sklearn.tree import DecisionTreeRegressor +from sklearn.ensemble import AdaBoostRegressor - -# Create a random dataset +# Create the dataset rng = np.random.RandomState(1) -X = np.sort(5 * rng.rand(80, 1), axis=0) -y = np.sin(X).ravel() -print X, '\n\n\n-----------\n\n\n', y -y[::5] += 3 * (0.5 - rng.rand(16)) - +X = np.linspace(0, 6, 100)[:, np.newaxis] +y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0]) # Fit regression model -regr_1 = DecisionTreeRegressor(max_depth=2, min_samples_leaf=5) -regr_2 = DecisionTreeRegressor(max_depth=5, min_samples_leaf=5) +regr_1 = DecisionTreeRegressor(max_depth=4) + +regr_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4), + n_estimators=300, random_state=rng) + regr_1.fit(X, y) regr_2.fit(X, y) - # Predict -X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis] -y_1 = regr_1.predict(X_test) -y_2 = regr_2.predict(X_test) - +y_1 = regr_1.predict(X) +y_2 = regr_2.predict(X) # Plot the results plt.figure() -plt.scatter(X, y, c="darkorange", label="data") -plt.plot(X_test, y_1, color="cornflowerblue", label="max_depth=2", linewidth=2) -plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=5", linewidth=2) +plt.scatter(X, y, c="k", label="training samples") +plt.plot(X, y_1, c="g", label="n_estimators=1", linewidth=2) +plt.plot(X, y_2, c="r", label="n_estimators=300", linewidth=2) plt.xlabel("data") plt.ylabel("target") -plt.title("Decision Tree Regression") +plt.title("Boosted Decision Tree Regression") plt.legend() plt.show() From 95d341fbb88aef145d7f1fe810e9581298e623d7 Mon Sep 17 00:00:00 2001 From: jiangzhonglian Date: Tue, 14 Mar 2017 23:24:17 +0800 Subject: [PATCH 2/2] =?UTF-8?q?=E6=9B=B4=E6=96=B0=E5=AE=8CAdaBoost?= =?UTF-8?q?=E7=AE=97=E6=B3=95=E4=BB=A3=E7=A0=81?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- docs/7.利用AdaBoost元算法提高分类.md | 4 + src/python/07.AdaBoost/adaboost.py | 204 +++++++++++++++++++++++++++ 2 files changed, 208 insertions(+) create mode 100644 src/python/07.AdaBoost/adaboost.py diff --git a/docs/7.利用AdaBoost元算法提高分类.md b/docs/7.利用AdaBoost元算法提高分类.md index a60e270a..191bc2da 100644 --- a/docs/7.利用AdaBoost元算法提高分类.md +++ b/docs/7.利用AdaBoost元算法提高分类.md @@ -24,3 +24,7 @@ * 3. 由于boosting分类的结果是基于所有分类器的加权求和结果的,因此boosting与bagging不太一样。 * 4. bagging中的分类器权重是相等的,而boosting中的分类器权重并不相等,每个权重代表的是其对应分类器在上一轮迭代中的成功度。 * 目前boosting方法最流行的版本是: AdaBoost。 +* AdaBoost的一般流程 + * 训练算法: 基于错误提升分类器的性能 + * 基于单层决策树构建弱分类器 + * 单层决策树(decision stump, 也称决策树桩)是一种简单的决策树。 \ No newline at end of file diff --git a/src/python/07.AdaBoost/adaboost.py b/src/python/07.AdaBoost/adaboost.py new file mode 100644 index 00000000..a387b4f2 --- /dev/null +++ b/src/python/07.AdaBoost/adaboost.py @@ -0,0 +1,204 @@ +#!/usr/bin/python +# coding:utf8 + +''' +Created on Nov 28, 2010 +Adaboost is short for Adaptive Boosting +@author: Peter/jiangzhonglian +''' +from numpy import * + + +def loadSimpData(): + """ 测试数据 + Returns: + dataArr feature对应的数据集 + labelArr feature对应的分类标签 + """ + dataArr = array([[1., 2.1], [2., 1.1], [1.3, 1.], [1., 1.], [2., 1.]]) + labelArr = [1.0, 1.0, -1.0, -1.0, 1.0] + return dataArr, labelArr + + +def stumpClassify(dataMat, dimen, threshVal, threshIneq): + """stumpClassify(将数据集,按照feature列的value进行 二元切分比较来赋值) + + Args: + dataMat Matrix数据集 + dimen 特征列 + threshVal 特征列要比较的值 + Returns: + retArray 结果集 + """ + retArray = ones((shape(dataMat)[0], 1)) + # dataMat[:, dimen] 表示数据集中第dimen列的所有值 + # print '-----', threshIneq, dataMat[:, dimen], threshVal + if threshIneq == 'lt': + retArray[dataMat[:, dimen] <= threshVal] = -1.0 + else: + retArray[dataMat[:, dimen] > threshVal] = -1.0 + return retArray + + +def buildStump(dataArr, labelArr, D): + + # 转换数据 + dataMat = mat(dataArr) + labelMat = mat(labelArr).T + # m行 n列 + m, n = shape(dataMat) + + # 初始化数据 + numSteps = 10.0 + bestStump = {} + bestClasEst = mat(zeros((m, 1))) + # 初始化的最小误差为无穷大 + minError = inf + + # 循环所有的feature列 + for i in range(n): + rangeMin = dataMat[:, i].min() + rangeMax = dataMat[:, i].max() + # print 'rangeMin=%s, rangeMax=%s' % (rangeMin, rangeMax) + # 计算每一份的元素个数 + stepSize = (rangeMax-rangeMin)/numSteps + # 分成-1~numSteps= 1+numSteps份, 加本身是需要+1的 + for j in range(-1, int(numSteps)+1): + # go over less than and greater than + for inequal in ['lt', 'gt']: + # 如果是-1,那么得到rangeMin-stepSize; 如果是numSteps,那么得到rangeMax + threshVal = (rangeMin + float(j) * stepSize) + # 对单层决策树进行简单分类 + predictedVals = stumpClassify(dataMat, i, threshVal, inequal) + # print predictedVals + errArr = mat(ones((m, 1))) + # 正确为0,错误为1 + errArr[predictedVals == labelMat] = 0 + # 计算 平均每个特征的概率0.2*错误概率的总和为多少,就知道错误率多高 + # calc total error multiplied by D + weightedError = D.T*errArr + ''' + dim 表示 feature列 + threshVal 表示树的分界值 + inequal 表示计算树左右颠倒的错误率的情况 + weightedError 表示整体结果的错误率 + ''' + # print "split: dim %d, thresh %.2f, thresh ineqal: %s, the weighted error is %.3f" % (i, threshVal, inequal, weightedError) + if weightedError < minError: + minError = weightedError + bestClasEst = predictedVals.copy() + bestStump['dim'] = i + bestStump['thresh'] = threshVal + bestStump['ineq'] = inequal + return bestStump, minError, bestClasEst + + +def adaBoostTrainDS(dataArr, labelArr, numIt=40): + weakClassArr = [] + m = shape(dataArr)[0] + # 初始化 init D to all equal + D = mat(ones((m, 1))/m) + aggClassEst = mat(zeros((m, 1))) + for i in range(numIt): + # build Stump + bestStump, error, classEst = buildStump(dataArr, labelArr, D) + # print "D:", D.T + # calc alpha, throw in max(error,eps) to account for error=0 + alpha = float(0.5*log((1.0-error)/max(error, 1e-16))) + bestStump['alpha'] = alpha + # store Stump Params in Array + weakClassArr.append(bestStump) + + # print "alpha=%s, classEst=%s, bestStump=%s, error=%s " % (alpha, classEst.T, bestStump, error) + # -1主要是下面求e的-alpha次方; 如果判断正确,乘积为1,否则为-1,这样就可以算出分类的情况了 + expon = multiply(-1*alpha*mat(labelArr).T, classEst) + # print 'expon=', -1*alpha*mat(labelArr).T, classEst, expon + # 计算e的expon次方,然后计算得到一个综合的概率的值 + # 结果发现: 正确的alpha的权重值变小了,错误的变大了。也就说D里面分类的权重值变了。(可以举例验证,假设:alpha=0.6,什么的) + D = multiply(D, exp(expon)) + D = D/D.sum() + print "D: ", D.T + # 计算分类结果的值,在上一轮结果的基础上,进行加和操作 + # calc training error of all classifiers, if this is 0 quit for loop early (use break) + aggClassEst += alpha*classEst + print "aggClassEst: ", aggClassEst.T + # sign 判断正为1, 0为0, 负为-1,通过最终加和的权重值,判断符号。 + # 结果为:错误的样本标签集合,因为是 !=,那么结果就是0 正, 1 负 + aggErrors = multiply(sign(aggClassEst) != mat(labelArr).T, ones((m, 1))) + errorRate = aggErrors.sum()/m + print "total error=%s " % (errorRate) + if errorRate == 0.0: + break + return weakClassArr, aggClassEst + + +if __name__ == "__main__": + dataArr, labelArr = loadSimpData() + print '-----\n', dataArr, '\n', labelArr + + # D表示最初,对1进行均分为5份,平均每一个初始的概率都为0.2 + D = mat(ones((5, 1))/5) + # print '-----', D + + # print buildStump(dataArr, labelArr, D) + weakClassArr, aggClassEst = adaBoostTrainDS(dataArr, labelArr, 9) + print weakClassArr + + + + +def loadDataSet(fileName): #general function to parse tab -delimited floats + numFeat = len(open(fileName).readline().split('\t')) #get number of fields + dataArr = [] + labelArr = [] + fr = open(fileName) + for line in fr.readlines(): + lineArr = [] + curLine = line.strip().split('\t') + for i in range(numFeat-1): + lineArr.append(float(curLine[i])) + dataArr.append(lineArr) + labelArr.append(float(curLine[-1])) + return dataArr, labelArr + + + + +def adaClassify(datToClass,classifierArr): + dataMatrix = mat(datToClass)#do stuff similar to last aggClassEst in adaBoostTrainDS + m = shape(dataMatrix)[0] + aggClassEst = mat(zeros((m,1))) + for i in range(len(classifierArr)): + classEst = stumpClassify(dataMatrix,classifierArr[i]['dim'],\ + classifierArr[i]['thresh'],\ + classifierArr[i]['ineq'])#call stump classify + aggClassEst += classifierArr[i]['alpha']*classEst + print aggClassEst + return sign(aggClassEst) + +def plotROC(predStrengths, classLabels): + import matplotlib.pyplot as plt + cur = (1.0,1.0) #cursor + ySum = 0.0 #variable to calculate AUC + numPosClas = sum(array(classLabels)==1.0) + yStep = 1/float(numPosClas); xStep = 1/float(len(classLabels)-numPosClas) + sortedIndicies = predStrengths.argsort()#get sorted index, it's reverse + fig = plt.figure() + fig.clf() + ax = plt.subplot(111) + #loop through all the values, drawing a line segment at each point + for index in sortedIndicies.tolist()[0]: + if classLabels[index] == 1.0: + delX = 0; delY = yStep; + else: + delX = xStep; delY = 0; + ySum += cur[1] + #draw line from cur to (cur[0]-delX,cur[1]-delY) + ax.plot([cur[0],cur[0]-delX],[cur[1],cur[1]-delY], c='b') + cur = (cur[0]-delX,cur[1]-delY) + ax.plot([0,1],[0,1],'b--') + plt.xlabel('False positive rate'); plt.ylabel('True positive rate') + plt.title('ROC curve for AdaBoost horse colic detection system') + ax.axis([0,1,0,1]) + plt.show() + print "the Area Under the Curve is: ",ySum*xStep