mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-13 07:15:26 +08:00
更新完15章 md内容
This commit is contained in:
@@ -3,7 +3,7 @@
|
||||
'''
|
||||
Created on Mar 8, 2011
|
||||
Update on 2017-05-18
|
||||
@author: Peter Harrington/山上有课树
|
||||
@author: Peter Harrington/山上有课树/片刻
|
||||
《机器学习实战》更新地址:https://github.com/apachecn/MachineLearning
|
||||
'''
|
||||
from numpy import linalg as la
|
||||
|
||||
@@ -1,45 +1,58 @@
|
||||
#!/usr/bin/python
|
||||
# coding:utf8
|
||||
|
||||
'''
|
||||
Created on 2017-04-07
|
||||
|
||||
@author: Peter/ApacheCN-xy
|
||||
Update on 2017-06-20
|
||||
@author: Peter/ApacheCN-xy/片刻
|
||||
《机器学习实战》更新地址:https://github.com/apachecn/MachineLearning
|
||||
'''
|
||||
from mrjob.job import MRJob
|
||||
|
||||
|
||||
class MRmean(MRJob):
|
||||
def __init__(self, *args, **kwargs): # 对数据初始化
|
||||
def __init__(self, *args, **kwargs): # 对数据初始化
|
||||
super(MRmean, self).__init__(*args, **kwargs)
|
||||
self.inCount = 0
|
||||
self.inSum = 0
|
||||
self.inSqSum = 0
|
||||
|
||||
def map(self, key, val): # 需要 2 个参数,求数据的和与平方和
|
||||
if False: yield
|
||||
# 接受输入数据流
|
||||
def map(self, key, val): # 需要 2 个参数,求数据的和与平方和
|
||||
if False:
|
||||
yield
|
||||
inVal = float(val)
|
||||
self.inCount += 1
|
||||
self.inSum += inVal
|
||||
self.inSqSum += inVal*inVal
|
||||
|
||||
def map_final(self): # 计算数据的平均值,平方的均值,并返回
|
||||
# 所有输入到达后开始处理
|
||||
def map_final(self): # 计算数据的平均值,平方的均值,并返回
|
||||
mn = self.inSum/self.inCount
|
||||
mnSq = self.inSqSum/self.inCount
|
||||
yield (1, [self.inCount, mn, mnSq])
|
||||
|
||||
def reduce(self, key, packedValues):
|
||||
cumVal=0.0; cumSumSq=0.0; cumN=0.0
|
||||
for valArr in packedValues: # 从输入流中获取值
|
||||
cumN, cumVal, cumSumSq = 0.0, 0.0, 0.0
|
||||
for valArr in packedValues: # 从输入流中获取值
|
||||
nj = float(valArr[0])
|
||||
cumN += nj
|
||||
cumVal += nj*float(valArr[1])
|
||||
cumSumSq += nj*float(valArr[2])
|
||||
mean = cumVal/cumN
|
||||
var = (cumSumSq - 2*mean*cumVal + cumN*mean*mean)/cumN
|
||||
yield (mean, var) # 发出平均值和方差
|
||||
yield (mean, var) # 发出平均值和方差
|
||||
|
||||
def steps(self):
|
||||
"""
|
||||
step方法定义执行的步骤。
|
||||
执行顺序不必完全遵循map-reduce模式。
|
||||
例如:
|
||||
1. map-reduce-reduce-reduce
|
||||
2. map-reduce-map-reduce-map-reduce
|
||||
在step方法里,需要为mrjob指定mapper和reducer的名称。如果没有,它将默认调用mapper和reducer方法。
|
||||
|
||||
在mapper 和 mapper_final中还可以共享状态,mapper 或 mapper_final 不能 reducer之间共享状态。
|
||||
"""
|
||||
return ([self.mr(mapper=self.map, mapper_final=self.map_final, reducer=self.reduce,)])
|
||||
|
||||
|
||||
|
||||
@@ -2,34 +2,39 @@
|
||||
# coding:utf8
|
||||
'''
|
||||
Created on 2017-04-06
|
||||
Update on 2017-06-20
|
||||
Machine Learning in Action Chapter 18
|
||||
Map Reduce Job for Hadoop Streaming
|
||||
@author: Peter Harrington/ApacheCn-xy
|
||||
'''
|
||||
|
||||
|
||||
'''
|
||||
这个mapper文件按行读取所有的输入并创建一组对应的浮点数,然后得到数组的长度并创建NumPy矩阵。
|
||||
再对所有的值进行平方,最后将均值和平方后的均值发送出去。这些值将用来计算全局的均值和方差。
|
||||
|
||||
Args:
|
||||
file 输入数据
|
||||
Return:
|
||||
|
||||
Map Reduce Job for Hadoop Streaming
|
||||
@author: Peter/ApacheCN-xy/片刻
|
||||
《机器学习实战》更新地址:https://github.com/apachecn/MachineLearning
|
||||
'''
|
||||
import sys
|
||||
from numpy import mat, mean, power
|
||||
|
||||
'''
|
||||
这个mapper文件按行读取所有的输入并创建一组对应的浮点数,然后得到数组的长度并创建NumPy矩阵。
|
||||
再对所有的值进行平方,最后将均值和平方后的均值发送出去。这些值将用来计算全局的均值和方差。
|
||||
|
||||
Args:
|
||||
file 输入数据
|
||||
Return:
|
||||
'''
|
||||
|
||||
|
||||
def read_input(file):
|
||||
for line in file:
|
||||
yield line.rstrip() # 返回值中包含输入文件的每一行的数据的一个大的List
|
||||
|
||||
input = read_input(sys.stdin) # 创建一个输入的数据行的列表list
|
||||
input = [float(line) for line in input] # 将得到的数据转化为 float 类型
|
||||
numInputs = len(input) # 获取数据的个数,即输入文件的数据的行数
|
||||
input = mat(input) # 将 List 转换为矩阵
|
||||
sqInput = power(input,2) # 将矩阵的数据分别求 平方,即 2次方
|
||||
yield line.rstrip() # 返回一个 yield 迭代器,每次获取下一个值,节约内存。
|
||||
|
||||
|
||||
input = read_input(sys.stdin) # 创建一个输入的数据行的列表list
|
||||
input = [float(line) for line in input] # 将得到的数据转化为 float 类型
|
||||
numInputs = len(input) # 获取数据的个数,即输入文件的数据的行数
|
||||
input = mat(input) # 将 List 转换为矩阵
|
||||
sqInput = power(input, 2) # 将矩阵的数据分别求 平方,即 2次方
|
||||
|
||||
# 输出 数据的个数,n个数据的均值,n个数据平方之后的均值
|
||||
print ("%d\t%f\t%f" % (numInputs, mean(input), mean(sqInput))) #计算均值
|
||||
print >> sys.stderr, "report: still alive"
|
||||
# 第一行是标准输出,也就是reducer的输出
|
||||
# 第二行识标准错误输出,即对主节点作出的响应报告,表明本节点工作正常。
|
||||
# 【这不就是面试的装逼重点吗?如何设计监听架构细节】注意:一个好的习惯是想标准错误输出发送报告。如果某任务10分钟内没有报告输出,则将被Hadoop中止。
|
||||
print("%d\t%f\t%f" % (numInputs, mean(input), mean(sqInput))) # 计算均值
|
||||
print >> sys.stderr, "map report: still alive"
|
||||
|
||||
@@ -3,44 +3,44 @@
|
||||
|
||||
'''
|
||||
Created on 2017-04-06
|
||||
Update on 2017-06-20
|
||||
Machine Learning in Action Chapter 18
|
||||
Map Reduce Job for Hadoop Streaming
|
||||
@author: Peter Harrington/ApacheCn-xy
|
||||
Map Reduce Job for Hadoop Streaming
|
||||
@author: Peter/ApacheCN-xy/片刻
|
||||
《机器学习实战》更新地址:https://github.com/apachecn/MachineLearning
|
||||
'''
|
||||
|
||||
import sys
|
||||
|
||||
'''
|
||||
mapper 接受原始的输入并产生中间值传递给 reducer。
|
||||
很多的mapper是并行执行的,所以需要将这些mapper的输出合并成一个值。
|
||||
即:将中间的 key/value 对进行组合。
|
||||
'''
|
||||
import sys
|
||||
from numpy import mat, mean, power
|
||||
|
||||
|
||||
def read_input(file):
|
||||
for line in file:
|
||||
yield line.rstrip() # 返回值中包含输入文件的每一行的数据的一个大的List
|
||||
|
||||
|
||||
|
||||
input = read_input(sys.stdin) # 创建一个输入的数据行的列表list
|
||||
|
||||
# 将输入行分割成单独的项目并存储在列表的列表中
|
||||
mapperOut = [line.split('\t') for line in input]
|
||||
# 输入 数据的个数,n个数据的均值,n个数据平方之后的均值
|
||||
print (mapperOut)
|
||||
|
||||
# 累计样本总和,总和 和 总和 sq
|
||||
cumVal=0.0
|
||||
cumSumSq=0.0
|
||||
cumN=0.0
|
||||
# 累计样本总和,总和 和 平分和的总和
|
||||
cumN, cumVal, cumSumSq = 0.0, 0.0, 0.0
|
||||
for instance in mapperOut:
|
||||
nj = float(instance[0])
|
||||
cumN += nj
|
||||
cumVal += nj*float(instance[1])
|
||||
cumSumSq += nj*float(instance[2])
|
||||
|
||||
#计算均值
|
||||
mean = cumVal/cumN
|
||||
meanSq = cumSumSq/cumN
|
||||
|
||||
#输出 数据总量,均值,平方的均值(方差)
|
||||
print ("%d\t%f\t%f" % (cumN, mean, meanSq))
|
||||
print >> sys.stderr, "report: still alive"
|
||||
# 计算均值( varSum是计算方差的展开形式 )
|
||||
mean_ = cumVal/cumN
|
||||
varSum = (cumSumSq - 2*mean_*cumVal + cumN*mean_*mean_)/cumN
|
||||
# 输出 数据总量,均值,平方的均值(方差)
|
||||
print ("数据总量:%d\t均值:%f\t方差:%f" % (cumN, mean_, varSum))
|
||||
print >> sys.stderr, "reduce report: still alive"
|
||||
|
||||
Reference in New Issue
Block a user