mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-09 21:36:27 +08:00
Create kMeans.py
add by wangyangting
This commit is contained in:
50
src/python/10.kmeans/kMeans.py
Normal file
50
src/python/10.kmeans/kMeans.py
Normal file
@@ -0,0 +1,50 @@
|
||||
#!/usr/bin/python
|
||||
# coding:utf8
|
||||
|
||||
from numpy import *
|
||||
|
||||
# 从文本中构建矩阵,加载文本文件,然后处理
|
||||
def loadDataSet(fileName): # 通用函数,用来解析以 tab 键分隔的 floats(浮点数)
|
||||
dataMat = [] # assume last column is target value
|
||||
fr = open(fileName)
|
||||
for line in fr.readlines():
|
||||
curLine = line.strip().split('\t')
|
||||
fltLine = map(float,curLine) # 映射所有的元素为 float(浮点数)类型
|
||||
dataMat.append(fltLine)
|
||||
return dataMat
|
||||
|
||||
# 计算两个向量的欧式距离(可根据场景选择)
|
||||
def distEclud(vecA, vecB):
|
||||
return sqrt(sum(power(vecA - vecB, 2))) # la.norm(vecA-vecB)
|
||||
|
||||
# 为给定数据集构建一个包含 k 个随机质心的集合。随机质心必须要在整个数据集的边界之内,这可以通过找到数据集每一维的最小和最大值来完成。然后生成 0~1.0 之间的随机数并通过取值范围和最小值,以便确保随机点在数据的边界之内。
|
||||
def randCent(dataSet, k):
|
||||
n = shape(dataSet)[1] # 列数
|
||||
centroids = mat(zeros((k,n))) # 创建质心矩阵
|
||||
for j in range(n): # 穿件随机簇质心,并且在每一维的边界内
|
||||
minJ = min(dataSet[:,j])
|
||||
rangeJ = float(max(dataSet[:,j]) - minJ)
|
||||
centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1)) # 随机生成
|
||||
return centroids
|
||||
|
||||
# k-means 聚类算法
|
||||
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
|
||||
m = shape(dataSet)[0]
|
||||
clusterAssment = mat(zeros((m,2))) # 创建矩阵来分配数据点到质心中
|
||||
centroids = createCent(dataSet, k)
|
||||
clusterChanged = True
|
||||
while clusterChanged:
|
||||
clusterChanged = False
|
||||
for i in range(m): # 循环每一个数据点并分配到最近的质心中去
|
||||
minDist = inf; minIndex = -1
|
||||
for j in range(k):
|
||||
distJI = distMeas(centroids[j,:],dataSet[i,:])
|
||||
if distJI < minDist:
|
||||
minDist = distJI; minIndex = j
|
||||
if clusterAssment[i,0] != minIndex: clusterChanged = True
|
||||
clusterAssment[i,:] = minIndex,minDist**2
|
||||
print centroids
|
||||
for cent in range(k): # 重新计算质心
|
||||
ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]] # 获取该簇中的所有点
|
||||
centroids[cent,:] = mean(ptsInClust, axis=0) # 分配质心
|
||||
return centroids, clusterAssment
|
||||
Reference in New Issue
Block a user