# Python 入门演示 ## 简单的数学运算 整数相加,得到整数: In [1]: ```py 2 + 2 ``` Out[1]: ```py 4 ``` 浮点数相加,得到浮点数: In [2]: ```py 2.0 + 2.5 ``` Out[2]: ```py 4.5 ``` 整数和浮点数相加,得到浮点数: In [3]: ```py 2 + 2.5 ``` Out[3]: ```py 4.5 ``` ## 变量赋值 **Python**使用`<变量名>=<表达式>`的方式对变量进行赋值 In [4]: ```py a = 0.2 ``` ## 字符串 String 字符串的生成,单引号与双引号是等价的: In [5]: ```py s = "hello world" s ``` Out[5]: ```py 'hello world' ``` In [6]: ```py s = 'hello world' s ``` Out[6]: ```py 'hello world' ``` 三引号用来输入包含多行文字的字符串: In [7]: ```py s = """hello world""" print s ``` ```py hello world ``` In [8]: ```py s = '''hello world''' print s ``` ```py hello world ``` 字符串的加法: In [9]: ```py s = "hello" + " world" s ``` Out[9]: ```py 'hello world' ``` 字符串索引: In [10]: ```py s[0] ``` Out[10]: ```py 'h' ``` In [11]: ```py s[-1] ``` Out[11]: ```py 'd' ``` In [12]: ```py s[0:5] ``` Out[12]: ```py 'hello' ``` 字符串的分割: In [13]: ```py s = "hello world" s.split() ``` Out[13]: ```py ['hello', 'world'] ``` 查看字符串的长度: In [14]: ```py len(s) ``` Out[14]: ```py 11 ``` ## 列表 List Python用`[]`来生成列表 In [15]: ```py a = [1, 2.0, 'hello', 5 + 1.0] a ``` Out[15]: ```py [1, 2.0, 'hello', 6.0] ``` 列表加法: In [16]: ```py a + a ``` Out[16]: ```py [1, 2.0, 'hello', 6.0, 1, 2.0, 'hello', 6.0] ``` 列表索引: In [17]: ```py a[1] ``` Out[17]: ```py 2.0 ``` 列表长度: In [18]: ```py len(a) ``` Out[18]: ```py 4 ``` 向列表中添加元素: In [19]: ```py a.append("world") a ``` Out[19]: ```py [1, 2.0, 'hello', 6.0, 'world'] ``` ## 集合 Set Python用{}来生成集合,集合中不含有相同元素。 In [20]: ```py s = {2, 3, 4, 2} s ``` Out[20]: ```py {2, 3, 4} ``` 集合的长度: In [21]: ```py len(s) ``` Out[21]: ```py 3 ``` 向集合中添加元素: In [22]: ```py s.add(1) s ``` Out[22]: ```py {1, 2, 3, 4} ``` 集合的交: In [23]: ```py a = {1, 2, 3, 4} b = {2, 3, 4, 5} a & b ``` Out[23]: ```py {2, 3, 4} ``` 并: In [24]: ```py a | b ``` Out[24]: ```py {1, 2, 3, 4, 5} ``` 差: In [25]: ```py a - b ``` Out[25]: ```py {1} ``` 对称差: In [26]: ```py a ^ b ``` Out[26]: ```py {1, 5} ``` ## 字典 Dictionary Python用`{key:value}`来生成Dictionary。 In [27]: ```py d = {'dogs':5, 'cats':4} d ``` Out[27]: ```py {'cats': 4, 'dogs': 5} ``` 字典的大小 In [28]: ```py len(d) ``` Out[28]: ```py 2 ``` 查看字典某个键对应的值: In [29]: ```py d["dogs"] ``` Out[29]: ```py 5 ``` 修改键值: In [30]: ```py d["dogs"] = 2 d ``` Out[30]: ```py {'cats': 4, 'dogs': 2} ``` 插入键值: In [31]: ```py d["pigs"] = 7 d ``` Out[31]: ```py {'cats': 4, 'dogs': 2, 'pigs': 7} ``` 所有的键: In [32]: ```py d.keys() ``` Out[32]: ```py ['cats', 'dogs', 'pigs'] ``` 所有的值: In [33]: ```py d.values() ``` Out[33]: ```py [4, 2, 7] ``` 所有的键值对: In [34]: ```py d.items() ``` Out[34]: ```py [('cats', 4), ('dogs', 2), ('pigs', 7)] ``` ## 数组 Numpy Arrays 需要先导入需要的包,Numpy数组可以进行很多列表不能进行的运算。 In [35]: ```py from numpy import array a = array([1, 2, 3, 4]) a ``` Out[35]: ```py array([1, 2, 3, 4]) ``` 加法: In [36]: ```py a + 2 ``` Out[36]: ```py array([3, 4, 5, 6]) ``` In [37]: ```py a + a ``` Out[37]: ```py array([2, 4, 6, 8]) ``` ## 画图 Plot Python提供了一个很像MATLAB的绘图接口。 In [38]: ```py %matplotlib inline from matplotlib.pyplot import plot plot(a, a**2) ``` Out[38]: ```py [] ``` ![]() ## 循环 Loop In [39]: ```py line = '1 2 3 4 5' fields = line.split() fields ``` Out[39]: ```py ['1', '2', '3', '4', '5'] ``` In [40]: ```py total = 0 for field in fields: total += int(field) total ``` Out[40]: ```py 15 ``` Python中有一种叫做列表推导式(List comprehension)的用法: In [41]: ```py numbers = [int(field) for field in fields] numbers ``` Out[41]: ```py [1, 2, 3, 4, 5] ``` In [42]: ```py sum(numbers) ``` Out[42]: ```py 15 ``` 写在一行: In [43]: ```py sum([int(field) for field in line.split()]) ``` Out[43]: ```py 15 ``` ## 文件操作 File IO In [44]: ```py cd ~ ``` ```py d:\Users\lijin ``` 写文件: In [45]: ```py f = open('data.txt', 'w') f.write('1 2 3 4\n') f.write('2 3 4 5\n') f.close() ``` 读文件: In [46]: ```py f = open('data.txt') data = [] for line in f: data.append([int(field) for field in line.split()]) f.close() data ``` Out[46]: ```py [[1, 2, 3, 4], [2, 3, 4, 5]] ``` In [47]: ```py for row in data: print row ``` ```py [1, 2, 3, 4] [2, 3, 4, 5] ``` 删除文件: In [48]: ```py import os os.remove('data.txt') ``` ## 函数 Function Python用关键词`def`来定义函数。 In [49]: ```py def poly(x, a, b, c): y = a * x ** 2 + b * x + c return y x = 1 poly(x, 1, 2, 3) ``` Out[49]: ```py 6 ``` 用Numpy数组做参数x: In [50]: ```py x = array([1, 2, 3]) poly(x, 1, 2, 3) ``` Out[50]: ```py array([ 6, 11, 18]) ``` 可以在定义时指定参数的默认值: In [51]: ```py from numpy import arange def poly(x, a = 1, b = 2, c = 3): y = a*x**2 + b*x + c return y x = arange(10) x array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) ``` Out[51]: ```py array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) ``` In [52]: ```py poly(x) ``` Out[52]: ```py array([ 3, 6, 11, 18, 27, 38, 51, 66, 83, 102]) ``` In [53]: ```py poly(x, b = 1) ``` Out[53]: ```py array([ 3, 5, 9, 15, 23, 33, 45, 59, 75, 93]) ``` ## 模块 Module Python中使用`import`关键词来导入模块。 In [54]: ```py import os ``` 当前进程号: In [55]: ```py os.getpid() ``` Out[55]: ```py 4400 ``` 系统分隔符: In [56]: ```py os.sep ``` Out[56]: ```py '\\' ``` ## - 类 Class 用`class`来定义一个类。 `Person(object)`表示继承自`object`类; `__init__`函数用来初始化对象; `self`表示对象自身,类似于`C` `Java`里面`this`。 In [57]: ```py class Person(object): def __init__(self, first, last, age): self.first = first self.last = last self.age = age def full_name(self): return self.first + ' ' + self.last ``` 构建新对象: In [58]: ```py person = Person('Mertle', 'Sedgewick', 52) ``` 调用对象的属性: In [59]: ```py person.first ``` Out[59]: ```py 'Mertle' ``` 调用对象的方法: In [60]: ```py person.full_name() ``` Out[60]: ```py 'Mertle Sedgewick' ``` 修改对象的属性: In [61]: ```py person.last = 'Smith' ``` 添加新属性,d是之前定义的字典: In [62]: ```py person.critters = d person.critters ``` Out[62]: ```py {'cats': 4, 'dogs': 2, 'pigs': 7} ``` ## 网络数据 Data from Web In [63]: ```py url = 'http://ichart.finance.yahoo.com/table.csv?s=GE&d=10&e=5&f=2013&g=d&a=0&b=2&c=1962&ignore=.csv' ``` 处理后就相当于一个可读文件: In [64]: ```py import urllib2 ge_csv = urllib2.urlopen(url) data = [] for line in ge_csv: data.append(line.split(',')) data[:4] ``` Out[64]: ```py [['Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'Adj Close\n'], ['2013-11-05', '26.32', '26.52', '26.26', '26.42', '24897500', '24.872115\n'], ['2013-11-04', '26.59', '26.59', '26.309999', '26.43', '28166100', '24.88153\n'], ['2013-11-01', '26.049999', '26.639999', '26.030001', '26.540001', '55634500', '24.985086\n']] ``` 使用`pandas`处理数据: In [65]: ```py ge_csv = urllib2.urlopen(url) import pandas ge = pandas.read_csv(ge_csv, index_col=0, parse_dates=True) ge.plot(y='Adj Close') ``` Out[65]: ```py ``` ![]()