# 列表与元组的速度比较 IPython 中用 `magic` 命令 `%timeit` 来计时。 ## 比较生成速度 In [1]: ```py %timeit [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25] ``` ```py 1000000 loops, best of 3: 456 ns per loop ``` In [2]: ```py %timeit (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25) ``` ```py 10000000 loops, best of 3: 23 ns per loop ``` 可以看到,元组的生成速度要比列表的生成速度快得多,相差大概一个数量级。 ## 比较遍历速度 产生内容相同的随机列表和元组: In [3]: ```py from numpy.random import rand values = rand(10000,4) lst = [list(row) for row in values] tup = tuple(tuple(row) for row in values) ``` In [4]: ```py %timeit for row in lst: list(row) ``` ```py 100 loops, best of 3: 4.12 ms per loop ``` In [5]: ```py %timeit for row in tup: tuple(row) ``` ```py 100 loops, best of 3: 2.07 ms per loop ``` 在遍历上,元组和列表的速度表现差不多。 ## 比较遍历和索引速度: In [6]: ```py %timeit for row in lst: a = row[0] + 1 ``` ```py The slowest run took 12.20 times longer than the fastest. This could mean that an intermediate result is being cached 100 loops, best of 3: 3.73 ms per loop ``` In [7]: ```py %timeit for row in tup: a = row[0] + 1 ``` ```py 100 loops, best of 3: 3.82 ms per loop ``` 元组的生成速度会比列表快很多,迭代速度快一点,索引速度差不多。