# 矩阵 使用 `mat` 方法将 `2` 维数组转化为矩阵: In [1]: ```py import numpy as np a = np.array([[1,2,4], [2,5,3], [7,8,9]]) A = np.mat(a) A ``` Out[1]: ```py matrix([[1, 2, 4], [2, 5, 3], [7, 8, 9]]) ``` 也可以使用 **Matlab** 的语法传入一个字符串来生成矩阵: In [2]: ```py A = np.mat('1,2,4;2,5,3;7,8,9') A ``` Out[2]: ```py matrix([[1, 2, 4], [2, 5, 3], [7, 8, 9]]) ``` 利用分块创造新的矩阵: In [3]: ```py a = np.array([[ 1, 2], [ 3, 4]]) b = np.array([[10,20], [30,40]]) np.bmat('a,b;b,a') ``` Out[3]: ```py matrix([[ 1, 2, 10, 20], [ 3, 4, 30, 40], [10, 20, 1, 2], [30, 40, 3, 4]]) ``` 矩阵与向量的乘法: In [4]: ```py x = np.array([[1], [2], [3]]) x ``` Out[4]: ```py array([[1], [2], [3]]) ``` In [5]: ```py A * x ``` Out[5]: ```py matrix([[17], [21], [50]]) ``` `A.I` 表示 `A` 矩阵的逆矩阵: In [6]: ```py print A * A.I ``` ```py [[ 1.00000000e+00 0.00000000e+00 0.00000000e+00] [ 0.00000000e+00 1.00000000e+00 2.08166817e-17] [ 2.22044605e-16 -8.32667268e-17 1.00000000e+00]] ``` 矩阵指数表示矩阵连乘: In [7]: ```py print A ** 4 ``` ```py [[ 6497 9580 9836] [ 7138 10561 10818] [18434 27220 27945]] ```