# 积分 ## 符号积分 积分与求导的关系: $$\frac{d}{dx} F(x) = f(x) \Rightarrow F(x) = \int f(x) dx$$ 符号运算可以用 `sympy` 模块完成。 先导入 `init_printing` 模块方便其显示: In [1]: ```py from sympy import init_printing init_printing() ``` In [2]: ```py from sympy import symbols, integrate import sympy ``` 产生 x 和 y 两个符号变量,并进行运算: In [3]: ```py x, y = symbols('x y') sympy.sqrt(x ** 2 + y ** 2) ``` Out[3]:$$\sqrt{x^{2} + y^{2}}$$ 对于生成的符号变量 `z`,我们将其中的 `x` 利用 `subs` 方法替换为 `3`: In [4]: ```py z = sympy.sqrt(x ** 2 + y ** 2) z.subs(x, 3) ``` Out[4]:$$\sqrt{y^{2} + 9}$$ 再替换 `y`: In [5]: ```py z.subs(x, 3).subs(y, 4) ``` Out[5]:$$5$$ 还可以从 `sympy.abc` 中导入现成的符号变量: In [6]: ```py from sympy.abc import theta y = sympy.sin(theta) ** 2 y ``` Out[6]:$$\sin^{2}{\left (\theta \right )}$$ 对 y 进行积分: In [7]: ```py Y = integrate(y) Y ``` Out[7]:$$\frac{\theta}{2} - \frac{1}{2} \sin{\left (\theta \right )} \cos{\left (\theta \right )}$$ 计算 $Y(\pi) - Y(0)$: In [8]: ```py import numpy as np np.set_printoptions(precision=3) Y.subs(theta, np.pi) - Y.subs(theta, 0) ``` Out[8]:$$1.5707963267949$$ 计算 $\int_0^\pi y d\theta$ : In [9]: ```py integrate(y, (theta, 0, sympy.pi)) ``` Out[9]:$$\frac{\pi}{2}$$ 显示的是字符表达式,查看具体数值可以使用 `evalf()` 方法,或者传入 `numpy.pi`,而不是 `sympy.pi` : In [10]: ```py integrate(y, (theta, 0, sympy.pi)).evalf() ``` Out[10]:$$1.5707963267949$$In [11]: ```py integrate(y, (theta, 0, np.pi)) ``` Out[11]:$$1.5707963267949$$ 根据牛顿莱布尼兹公式,这两个数值应该相等。 产生不定积分对象: In [12]: ```py Y_indef = sympy.Integral(y) Y_indef ``` Out[12]:$$\int \sin^{2}{\left (\theta \right )}\, d\theta$$In [13]: ```py print type(Y_indef) ``` ```py ``` 定积分: In [14]: ```py Y_def = sympy.Integral(y, (theta, 0, sympy.pi)) Y_def ``` Out[14]:$$\int_{0}^{\pi} \sin^{2}{\left (\theta \right )}\, d\theta$$ 产生函数 $Y(x) = \int_0^x sin^2(\theta) d\theta$,并将其向量化: In [15]: ```py Y_raw = lambda x: integrate(y, (theta, 0, x)) Y = np.vectorize(Y_raw) ``` In [16]: ```py %matplotlib inline import matplotlib.pyplot as plt x = np.linspace(0, 2 * np.pi) p = plt.plot(x, Y(x)) t = plt.title(r'$Y(x) = \int_0^x sin^2(\theta) d\theta$') ``` ![]() ## 数值积分 数值积分: $$F(x) = \lim_{n \rightarrow \infty} \sum_{i=0}^{n-1} f(x_i)(x_{i+1}-x_i) \Rightarrow F(x) = \int_{x_0}^{x_n} f(x) dx$$ 导入贝塞尔函数: In [17]: ```py from scipy.special import jv ``` In [18]: ```py def f(x): return jv(2.5, x) ``` In [19]: ```py x = np.linspace(0, 10) p = plt.plot(x, f(x), 'k-') ``` ![]() ### `quad` 函数 Quadrature 积分的原理参见: [http://en.wikipedia.org/wiki/Numerical_integration#Quadrature_rules_based_on_interpolating_functions](http://en.wikipedia.org/wiki/Numerical_integration#Quadrature_rules_based_on_interpolating_functions) quad 返回一个 (积分值,误差) 组成的元组: In [20]: ```py from scipy.integrate import quad interval = [0, 6.5] value, max_err = quad(f, *interval) ``` 积分值: In [21]: ```py print value ``` ```py 1.28474297234 ``` 最大误差: In [22]: ```py print max_err ``` ```py 2.34181853668e-09 ``` 积分区间图示,蓝色为正,红色为负: In [23]: ```py print "integral = {:.9f}".format(value) print "upper bound on error: {:.2e}".format(max_err) x = np.linspace(0, 10, 100) p = plt.plot(x, f(x), 'k-') x = np.linspace(0, 6.5, 45) p = plt.fill_between(x, f(x), where=f(x)>0, color="blue") p = plt.fill_between(x, f(x), where=f(x)<0, color="red", interpolate=True) ``` ```py integral = 1.284742972 upper bound on error: 2.34e-09 ``` ![]() ### 积分到无穷 In [24]: ```py from numpy import inf interval = [0., inf] def g(x): return np.exp(-x ** 1/2) ``` In [25]: ```py value, max_err = quad(g, *interval) x = np.linspace(0, 10, 50) fig = plt.figure(figsize=(10,3)) p = plt.plot(x, g(x), 'k-') p = plt.fill_between(x, g(x)) plt.annotate(r"$\int_0^{\infty}e^{-x^1/2}dx = $" + "{}".format(value), (4, 0.6), fontsize=16) print "upper bound on error: {:.1e}".format(max_err) ``` ```py upper bound on error: 7.2e-11 ``` ![]() ### 双重积分 假设我们要进行如下的积分: $$ I_n = \int \limits_0^{\infty} \int \limits_1^{\infty} \frac{e^{-xt}}{t^n}dt dx = \frac{1}{n}$$In [26]: ```py def h(x, t, n): """core function, takes x, t, n""" return np.exp(-x * t) / (t ** n) ``` 一种方式是调用两次 `quad` 函数,不过这里 `quad` 的返回值不能向量化,所以使用了修饰符 `vectorize` 将其向量化: In [27]: ```py from numpy import vectorize @vectorize def int_h_dx(t, n): """Time integrand of h(x).""" return quad(h, 0, np.inf, args=(t, n))[0] ``` In [28]: ```py @vectorize def I_n(n): return quad(int_h_dx, 1, np.inf, args=(n)) ``` In [29]: ```py I_n([0.5, 1.0, 2.0, 5]) ``` Out[29]: ```py (array([ 1.97, 1\. , 0.5 , 0.2 ]), array([ 9.804e-13, 1.110e-14, 5.551e-15, 2.220e-15])) ``` 或者直接调用 `dblquad` 函数,并将积分参数传入,传入方式有多种,后传入的先进行积分: In [30]: ```py from scipy.integrate import dblquad @vectorize def I(n): """Same as I_n, but using the built-in dblquad""" x_lower = 0 x_upper = np.inf return dblquad(h, lambda t_lower: 1, lambda t_upper: np.inf, x_lower, x_upper, args=(n,)) ``` In [31]: ```py I_n([0.5, 1.0, 2.0, 5]) ``` Out[31]: ```py (array([ 1.97, 1\. , 0.5 , 0.2 ]), array([ 9.804e-13, 1.110e-14, 5.551e-15, 2.220e-15])) ``` ## 采样点积分 ### trapz 方法 和 simps 方法 In [32]: ```py from scipy.integrate import trapz, simps ``` `sin` 函数, `100` 个采样点和 `5` 个采样点: In [33]: ```py x_s = np.linspace(0, np.pi, 5) y_s = np.sin(x_s) x = np.linspace(0, np.pi, 100) y = np.sin(x) ``` In [34]: ```py p = plt.plot(x, y, 'k:') p = plt.plot(x_s, y_s, 'k+-') p = plt.fill_between(x_s, y_s, color="gray") ``` ![]() 采用 [trapezoidal 方法](https://en.wikipedia.org/wiki/Trapezoidal_rule) 和 [simpson 方法](https://en.wikipedia.org/wiki/Simpson%27s_rule) 对这些采样点进行积分(函数积分为 2): In [35]: ```py result_s = trapz(y_s, x_s) result_s_s = simps(y_s, x_s) result = trapz(y, x) print "Trapezoidal Integration over 5 points : {:.3f}".format(result_s) print "Simpson Integration over 5 points : {:.3f}".format(result_s_s) print "Trapezoidal Integration over 100 points : {:.3f}".format(result) ``` ```py Trapezoidal Integration over 5 points : 1.896 Simpson Integration over 5 points : 2.005 Trapezoidal Integration over 100 points : 2.000 ``` ### 使用 ufunc 进行积分 `Numpy` 中有很多 `ufunc` 对象: In [36]: ```py type(np.add) ``` Out[36]: ```py numpy.ufunc ``` In [37]: ```py np.info(np.add.accumulate) ``` ```py accumulate(array, axis=0, dtype=None, out=None) Accumulate the result of applying the operator to all elements. For a one-dimensional array, accumulate produces results equivalent to:: r = np.empty(len(A)) t = op.identity # op = the ufunc being applied to A's elements for i in range(len(A)): t = op(t, A[i]) r[i] = t return r For example, add.accumulate() is equivalent to np.cumsum(). For a multi-dimensional array, accumulate is applied along only one axis (axis zero by default; see Examples below) so repeated use is necessary if one wants to accumulate over multiple axes. Parameters ---------- array : array_like The array to act on. axis : int, optional The axis along which to apply the accumulation; default is zero. dtype : data-type code, optional The data-type used to represent the intermediate results. Defaults to the data-type of the output array if such is provided, or the the data-type of the input array if no output array is provided. out : ndarray, optional A location into which the result is stored. If not provided a freshly-allocated array is returned. Returns ------- r : ndarray The accumulated values. If `out` was supplied, `r` is a reference to `out`. Examples -------- 1-D array examples: >>> np.add.accumulate([2, 3, 5]) array([ 2, 5, 10]) >>> np.multiply.accumulate([2, 3, 5]) array([ 2, 6, 30]) 2-D array examples: >>> I = np.eye(2) >>> I array([[ 1., 0.], [ 0., 1.]]) Accumulate along axis 0 (rows), down columns: >>> np.add.accumulate(I, 0) array([[ 1., 0.], [ 1., 1.]]) >>> np.add.accumulate(I) # no axis specified = axis zero array([[ 1., 0.], [ 1., 1.]]) Accumulate along axis 1 (columns), through rows: >>> np.add.accumulate(I, 1) array([[ 1., 1.], [ 0., 1.]]) ``` `np.add.accumulate` 相当于 `cumsum` : In [38]: ```py result_np = np.add.accumulate(y) * (x[1] - x[0]) - (x[1] - x[0]) / 2 ``` In [39]: ```py p = plt.plot(x, - np.cos(x) + np.cos(0), 'rx') p = plt.plot(x, result_np) ``` ![]() ### 速度比较 计算积分:$$\int_0^x sin \theta d\theta$$ In [40]: ```py import sympy from sympy.abc import x, theta sympy_x = x ``` In [41]: ```py x = np.linspace(0, 20 * np.pi, 1e+4) y = np.sin(x) sympy_y = vectorize(lambda x: sympy.integrate(sympy.sin(theta), (theta, 0, x))) ``` `numpy` 方法: In [42]: ```py %timeit np.add.accumulate(y) * (x[1] - x[0]) y0 = np.add.accumulate(y) * (x[1] - x[0]) print y0[-1] ``` ```py The slowest run took 4.32 times longer than the fastest. This could mean that an intermediate result is being cached 10000 loops, best of 3: 56.2 µs per loop -2.34138044756e-17 ``` `quad` 方法: In [43]: ```py %timeit quad(np.sin, 0, 20 * np.pi) y2 = quad(np.sin, 0, 20 * np.pi, full_output=True) print "result = ", y2[0] print "number of evaluations", y2[-1]['neval'] ``` ```py 10000 loops, best of 3: 40.5 µs per loop result = 3.43781337153e-15 number of evaluations 21 ``` `trapz` 方法: In [44]: ```py %timeit trapz(y, x) y1 = trapz(y, x) print y1 ``` ```py 10000 loops, best of 3: 105 µs per loop -4.4408920985e-16 ``` `simps` 方法: In [45]: ```py %timeit simps(y, x) y3 = simps(y, x) print y3 ``` ```py 1000 loops, best of 3: 801 µs per loop 3.28428554968e-16 ``` `sympy` 积分方法: In [46]: ```py %timeit sympy_y(20 * np.pi) y4 = sympy_y(20 * np.pi) print y4 ``` ```py 100 loops, best of 3: 6.86 ms per loop 0 ```