# 注释 ## 使用文本框进行注释 先看一个简单的例子: In [1]: ```py import numpy.random import matplotlib.pyplot as plt %matplotlib inline fig = plt.figure(1, figsize=(5,5)) fig.clf() ax = fig.add_subplot(111) ax.set_aspect(1) x1 = -1 + numpy.random.randn(100) y1 = -1 + numpy.random.randn(100) x2 = 1. + numpy.random.randn(100) y2 = 1. + numpy.random.randn(100) ax.scatter(x1, y1, color="r") ax.scatter(x2, y2, color="g") # 加上两个文本框 bbox_props = dict(boxstyle="round", fc="w", ec="0.5", alpha=0.9) ax.text(-2, -2, "Sample A", ha="center", va="center", size=20, bbox=bbox_props) ax.text(2, 2, "Sample B", ha="center", va="center", size=20, bbox=bbox_props) # 加上一个箭头文本框 bbox_props = dict(boxstyle="rarrow", fc=(0.8,0.9,0.9), ec="b", lw=2) t = ax.text(0, 0, "Direction", ha="center", va="center", rotation=45, size=15, bbox=bbox_props) bb = t.get_bbox_patch() bb.set_boxstyle("rarrow", pad=0.6) ax.set_xlim(-4, 4) ax.set_ylim(-4, 4) plt.show() ``` ![]() `text()` 函数接受 `bbox` 参数来绘制文本框。 ```py bbox_props = dict(boxstyle="rarrow,pad=0.3", fc="cyan", ec="b", lw=2) t = ax.text(0, 0, "Direction", ha="center", va="center", rotation=45, size=15, bbox=bbox_props) ``` 可以这样来获取这个文本框,并对其参数进行修改: ```py bb = t.get_bbox_patch() bb.set_boxstyle("rarrow", pad=0.6) ``` 可用的文本框风格有: | class | name | attrs | | --- | --- | --- | | LArrow | larrow | pad=0.3 | | RArrow | rarrow | pad=0.3 | | Round | round | pad=0.3,rounding_size=None | | Round4 | round4 | pad=0.3,rounding_size=None | | Roundtooth | roundtooth | pad=0.3,tooth_size=None | | Sawtooth | sawtooth | pad=0.3,tooth_size=None | | Square | square | pad=0.3 | In [2]: ```py import matplotlib.patches as mpatch import matplotlib.pyplot as plt styles = mpatch.BoxStyle.get_styles() figheight = (len(styles)+.5) fig1 = plt.figure(figsize=(4/1.5, figheight/1.5)) fontsize = 0.3 * 72 ax = fig1.add_subplot(111) for i, (stylename, styleclass) in enumerate(styles.items()): ax.text(0.5, (float(len(styles)) - 0.5 - i)/figheight, stylename, ha="center", size=fontsize, transform=fig1.transFigure, bbox=dict(boxstyle=stylename, fc="w", ec="k")) # 去掉轴的显示 ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ax.spines['left'].set_color('none') ax.spines['bottom'].set_color('none') plt.xticks([]) plt.yticks([]) plt.show() ``` ![]() 各个风格的文本框如上图所示。 ## 使用箭头进行注释 In [3]: ```py plt.figure(1, figsize=(3,3)) ax = plt.subplot(111) ax.annotate("", xy=(0.2, 0.2), xycoords='data', xytext=(0.8, 0.8), textcoords='data', arrowprops=dict(arrowstyle="->", connectionstyle="arc3"), ) plt.show() ``` ![]() 之前介绍了 `annotate` 中 `xy, xycoords, xytext, textcoords` 参数的含义,通常我们把 `xy` 设在 `data` 坐标系,把 `xytext` 设在 `offset` 即以注释点为原点的参考系。 箭头显示是可选的,用 `arrowprops` 参数来指定,接受一个字典作为参数。 不同类型的绘制箭头方式: In [4]: ```py import matplotlib.pyplot as plt import matplotlib.patches as mpatches x1, y1 = 0.3, 0.3 x2, y2 = 0.7, 0.7 fig = plt.figure(1, figsize=(8,3)) fig.clf() from mpl_toolkits.axes_grid.axes_grid import AxesGrid from mpl_toolkits.axes_grid.anchored_artists import AnchoredText #from matplotlib.font_manager import FontProperties def add_at(ax, t, loc=2): fp = dict(size=10) _at = AnchoredText(t, loc=loc, prop=fp) ax.add_artist(_at) return _at grid = AxesGrid(fig, 111, (1, 4), label_mode="1", share_all=True) grid[0].set_autoscale_on(False) ax = grid[0] ax.plot([x1, x2], [y1, y2], ".") el = mpatches.Ellipse((x1, y1), 0.3, 0.4, angle=30, alpha=0.2) ax.add_artist(el) ax.annotate("", xy=(x1, y1), xycoords='data', xytext=(x2, y2), textcoords='data', arrowprops=dict(arrowstyle="-", #linestyle="dashed", color="0.5", patchB=None, shrinkB=0, connectionstyle="arc3,rad=0.3", ), ) add_at(ax, "connect", loc=2) ax = grid[1] ax.plot([x1, x2], [y1, y2], ".") el = mpatches.Ellipse((x1, y1), 0.3, 0.4, angle=30, alpha=0.2) ax.add_artist(el) ax.annotate("", xy=(x1, y1), xycoords='data', xytext=(x2, y2), textcoords='data', arrowprops=dict(arrowstyle="-", #linestyle="dashed", color="0.5", patchB=el, shrinkB=0, connectionstyle="arc3,rad=0.3", ), ) add_at(ax, "clip", loc=2) ax = grid[2] ax.plot([x1, x2], [y1, y2], ".") el = mpatches.Ellipse((x1, y1), 0.3, 0.4, angle=30, alpha=0.2) ax.add_artist(el) ax.annotate("", xy=(x1, y1), xycoords='data', xytext=(x2, y2), textcoords='data', arrowprops=dict(arrowstyle="-", #linestyle="dashed", color="0.5", patchB=el, shrinkB=5, connectionstyle="arc3,rad=0.3", ), ) add_at(ax, "shrink", loc=2) ax = grid[3] ax.plot([x1, x2], [y1, y2], ".") el = mpatches.Ellipse((x1, y1), 0.3, 0.4, angle=30, alpha=0.2) ax.add_artist(el) ax.annotate("", xy=(x1, y1), xycoords='data', xytext=(x2, y2), textcoords='data', arrowprops=dict(arrowstyle="fancy", #linestyle="dashed", color="0.5", patchB=el, shrinkB=5, connectionstyle="arc3,rad=0.3", ), ) add_at(ax, "mutate", loc=2) grid[0].set_xlim(0, 1) grid[0].set_ylim(0, 1) grid[0].axis["bottom"].toggle(ticklabels=False) grid[0].axis["left"].toggle(ticklabels=False) fig.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95) plt.draw() plt.show() ``` ![]() 字典中,`connectionstyle` 参数控制路径的风格: | Name | Attr | | --- | --- | | angle | angleA=90,angleB=0,rad=0.0 | | angle3 | angleA=90,angleB=0 | | arc | angleA=0,angleB=0,armA=None,armB=None,rad=0.0 | | arc3 | rad=0.0 | | bar | armA=0.0,armB=0.0,fraction=0.3,angle=None | In [5]: ```py import matplotlib.pyplot as plt import matplotlib.patches as mpatches fig = plt.figure(1, figsize=(8,5)) fig.clf() from mpl_toolkits.axes_grid.axes_grid import AxesGrid from mpl_toolkits.axes_grid.anchored_artists import AnchoredText #from matplotlib.font_manager import FontProperties def add_at(ax, t, loc=2): fp = dict(size=8) _at = AnchoredText(t, loc=loc, prop=fp) ax.add_artist(_at) return _at grid = AxesGrid(fig, 111, (3, 5), label_mode="1", share_all=True) grid[0].set_autoscale_on(False) x1, y1 = 0.3, 0.3 x2, y2 = 0.7, 0.7 def demo_con_style(ax, connectionstyle, label=None): if label is None: label = connectionstyle x1, y1 = 0.3, 0.2 x2, y2 = 0.8, 0.6 ax.plot([x1, x2], [y1, y2], ".") ax.annotate("", xy=(x1, y1), xycoords='data', xytext=(x2, y2), textcoords='data', arrowprops=dict(arrowstyle="->", #linestyle="dashed", color="0.5", shrinkA=5, shrinkB=5, patchA=None, patchB=None, connectionstyle=connectionstyle, ), ) add_at(ax, label, loc=2) column = grid.axes_column[0] demo_con_style(column[0], "angle3,angleA=90,angleB=0", label="angle3,\nangleA=90,\nangleB=0") demo_con_style(column[1], "angle3,angleA=0,angleB=90", label="angle3,\nangleA=0,\nangleB=90") column = grid.axes_column[1] demo_con_style(column[0], "arc3,rad=0.") demo_con_style(column[1], "arc3,rad=0.3") demo_con_style(column[2], "arc3,rad=-0.3") column = grid.axes_column[2] demo_con_style(column[0], "angle,angleA=-90,angleB=180,rad=0", label="angle,\nangleA=-90,\nangleB=180,\nrad=0") demo_con_style(column[1], "angle,angleA=-90,angleB=180,rad=5", label="angle,\nangleA=-90,\nangleB=180,\nrad=5") demo_con_style(column[2], "angle,angleA=-90,angleB=10,rad=5", label="angle,\nangleA=-90,\nangleB=10,\nrad=0") column = grid.axes_column[3] demo_con_style(column[0], "arc,angleA=-90,angleB=0,armA=30,armB=30,rad=0", label="arc,\nangleA=-90,\nangleB=0,\narmA=30,\narmB=30,\nrad=0") demo_con_style(column[1], "arc,angleA=-90,angleB=0,armA=30,armB=30,rad=5", label="arc,\nangleA=-90,\nangleB=0,\narmA=30,\narmB=30,\nrad=5") demo_con_style(column[2], "arc,angleA=-90,angleB=0,armA=0,armB=40,rad=0", label="arc,\nangleA=-90,\nangleB=0,\narmA=0,\narmB=40,\nrad=0") column = grid.axes_column[4] demo_con_style(column[0], "bar,fraction=0.3", label="bar,\nfraction=0.3") demo_con_style(column[1], "bar,fraction=-0.3", label="bar,\nfraction=-0.3") demo_con_style(column[2], "bar,angle=180,fraction=-0.2", label="bar,\nangle=180,\nfraction=-0.2") #demo_con_style(column[1], "arc3,rad=0.3") #demo_con_style(column[2], "arc3,rad=-0.3") grid[0].set_xlim(0, 1) grid[0].set_ylim(0, 1) grid.axes_llc.axis["bottom"].toggle(ticklabels=False) grid.axes_llc.axis["left"].toggle(ticklabels=False) fig.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95) plt.draw() plt.show() ``` ![]() `arrowstyle` 参数控制小箭头的风格: | Name | Attrs | | --- | --- | | `-` | None | | `->` | head_length=0.4,head_width=0.2 | | `-[` | widthB=1.0,lengthB=0.2,angleB=None | | ¦`-`¦ | widthA=1.0,widthB=1.0 | | `-`¦`>` | head_length=0.4,head_width=0.2 | | `<-` | head_length=0.4,head_width=0.2 | | `<->` | head_length=0.4,head_width=0.2 | | `<`¦`-` | head_length=0.4,head_width=0.2 | | `<`¦-¦`>` | head_length=0.4,head_width=0.2 | | `fancy` | head_length=0.4,head_width=0.4,tail_width=0.4 | | `simple` | head_length=0.5,head_width=0.5,tail_width=0.2 | | `wedge` | tail_width=0.3,shrink_factor=0.5 | In [6]: ```py import matplotlib.patches as mpatches import matplotlib.pyplot as plt styles = mpatches.ArrowStyle.get_styles() ncol=2 nrow = (len(styles)+1) // ncol figheight = (nrow+0.5) fig1 = plt.figure(1, (4.*ncol/1.5, figheight/1.5)) fontsize = 0.2 * 70 ax = fig1.add_axes([0, 0, 1, 1], frameon=False, aspect=1.) ax.set_xlim(0, 4*ncol) ax.set_ylim(0, figheight) def to_texstring(s): s = s.replace("<", r"$<$") s = s.replace(">", r"$>$") s = s.replace("|", r"$|$") return s for i, (stylename, styleclass) in enumerate(sorted(styles.items())): x = 3.2 + (i//nrow)*4 y = (figheight - 0.7 - i%nrow) # /figheight p = mpatches.Circle((x, y), 0.2, fc="w") ax.add_patch(p) ax.annotate(to_texstring(stylename), (x, y), (x-1.2, y), #xycoords="figure fraction", textcoords="figure fraction", ha="right", va="center", size=fontsize, arrowprops=dict(arrowstyle=stylename, patchB=p, shrinkA=5, shrinkB=5, fc="w", ec="k", connectionstyle="arc3,rad=-0.05", ), bbox=dict(boxstyle="square", fc="w")) ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) plt.draw() plt.show() ``` ![]()