# 标签 In [1]: ```py import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline ``` `legend()` 函数被用来添加图像的标签,其主要相关的属性有: * legend entry - 一个 legend 包含一个或多个 entry,一个 entry 对应一个 key 和一个 label * legend key - marker 的标记 * legend label - key 的说明 * legend handle - 一个 entry 在图上对应的对象 ## 使用 legend 调用 `legend()` 会自动获取当前的 `Axes` 对象,并且得到这些 handles 和 labels,相当于: ```py handles, labels = ax.get_legend_handles_labels() ax.legend(handles, labels) ``` 我们可以在函数中指定 `handles` 的参数: In [2]: ```py line_up, = plt.plot([1,2,3], label='Line 2') line_down, = plt.plot([3,2,1], label='Line 1') plt.legend(handles=[line_up, line_down]) plt.show() ``` ![]() 可以将 labels 作为参数输入 `legend` 函数: In [3]: ```py line_up, = plt.plot([1,2,3]) line_down, = plt.plot([3,2,1]) plt.legend([line_up, line_down], ['Line Up', 'Line Down']) plt.show() ``` ![]() ## 产生特殊形状的 marker key 有时我们可以产生一些特殊形状的 marker: 块状: In [4]: ```py import matplotlib.patches as mpatches red_patch = mpatches.Patch(color='red', label='The red data') plt.legend(handles=[red_patch]) plt.show() ``` ![]() 点线组合: In [5]: ```py import matplotlib.lines as mlines import matplotlib.pyplot as plt blue_line = mlines.Line2D([], [], color='blue', marker='*', markersize=15, label='Blue stars') plt.legend(handles=[blue_line]) plt.show() ``` ![]() ## 指定 legend 的位置 `bbox_to_anchor` 关键词可以指定 `legend` 放置的位置,例如放到图像的右上角: In [6]: ```py plt.plot([1,2,3], label="test1") plt.plot([3,2,1], label="test2") plt.legend(bbox_to_anchor=(1, 1), bbox_transform=plt.gcf().transFigure) plt.show() ``` ![]() 更复杂的用法: In [7]: ```py plt.subplot(211) plt.plot([1,2,3], label="test1") plt.plot([3,2,1], label="test2") # Place a legend above this legend, expanding itself to # fully use the given bounding box. plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, mode="expand", borderaxespad=0.) plt.subplot(223) plt.plot([1,2,3], label="test1") plt.plot([3,2,1], label="test2") # Place a legend to the right of this smaller figure. plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.show() ``` ![]() ## 同一个 Axes 中的多个 legend 可以这样添加多个 `legend`: In [8]: ```py line1, = plt.plot([1,2,3], label="Line 1", linestyle='--') line2, = plt.plot([3,2,1], label="Line 2", linewidth=4) # Create a legend for the first line. first_legend = plt.legend(handles=[line1], loc=1) # Add the legend manually to the current Axes. ax = plt.gca().add_artist(first_legend) # Create another legend for the second line. plt.legend(handles=[line2], loc=4) plt.show() ``` ![]() 其中 `loc` 参数可以取 0-10 或者 字符串,表示放置的位置: | loc string | loc code | | --- | --- | | `'best'` | 0 | | `'upper right'` | 1 | | `'upper left'` | 2 | | `'lower left'` | 3 | | `'lower right'` | 4 | | `'right'` | 5 | | `'center left'` | 6 | | `'center right'` | 7 | | `'lower center'` | 8 | | `'upper center'` | 9 | | `'center'` | 10 | ## 更多用法 多个 `handle` 可以通过括号组合在一个 entry 中: In [9]: ```py from numpy.random import randn z = randn(10) red_dot, = plt.plot(z, "ro", markersize=15) # Put a white cross over some of the data. white_cross, = plt.plot(z[:5], "w+", markeredgewidth=3, markersize=15) plt.legend([red_dot, (red_dot, white_cross)], ["Attr A", "Attr A+B"]) plt.show() ``` ![]() 自定义 `handle`: In [10]: ```py import matplotlib.pyplot as plt import matplotlib.patches as mpatches class AnyObject(object): pass class AnyObjectHandler(object): def legend_artist(self, legend, orig_handle, fontsize, handlebox): x0, y0 = handlebox.xdescent, handlebox.ydescent width, height = handlebox.width, handlebox.height patch = mpatches.Rectangle([x0, y0], width, height, facecolor='red', edgecolor='black', hatch='xx', lw=3, transform=handlebox.get_transform()) handlebox.add_artist(patch) return patch plt.legend([AnyObject()], ['My first handler'], handler_map={AnyObject: AnyObjectHandler()}) plt.show() ``` ![]() 椭圆: In [11]: ```py from matplotlib.legend_handler import HandlerPatch import matplotlib.pyplot as plt import matplotlib.patches as mpatches class HandlerEllipse(HandlerPatch): def create_artists(self, legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans): center = 0.5 * width - 0.5 * xdescent, 0.5 * height - 0.5 * ydescent p = mpatches.Ellipse(xy=center, width=width + xdescent, height=height + ydescent) self.update_prop(p, orig_handle, legend) p.set_transform(trans) return [p] c = mpatches.Circle((0.5, 0.5), 0.25, facecolor="green", edgecolor="red", linewidth=3) plt.gca().add_patch(c) plt.legend([c], ["An ellipse, not a rectangle"], handler_map={mpatches.Circle: HandlerEllipse()}) plt.show() ``` ![]()