# super() 函数 ```py super(CurrentClassName, instance) ``` 返回该类实例对应的父类对象。 In [1]: ```py class Leaf(object): def __init__(self, color="green"): self.color = color def fall(self): print "Splat!" class MapleLeaf(Leaf): def change_color(self): if self.color == "green": self.color = "red" def fall(self): self.change_color() super(MapleLeaf, self).fall() ``` 这里,我们先改变树叶的颜色,然后再找到这个实例对应的父类,并调用父类的 `fall()` 方法: In [2]: ```py mleaf = MapleLeaf() print mleaf.color mleaf.fall() print mleaf.color ``` ```py green Splat! red ``` 回到我们的森林例子,这里我们将森林 `Forest` 作为父类,并定义一个子类 `BurnableForest`: In [3]: ```py import numpy as np class Forest(object): """ Forest can grow trees which eventually die.""" def __init__(self, size=(150,150), p_sapling=0.0025): self.size = size self.trees = np.zeros(self.size, dtype=bool) self.p_sapling = p_sapling def __repr__(self): my_repr = "{}(size={})".format(self.__class__.__name__, self.size) return my_repr def __str__(self): return self.__class__.__name__ @property def num_cells(self): """Number of cells available for growing trees""" return np.prod(self.size) @property def tree_fraction(self): """ Fraction of trees """ num_trees = self.trees.sum() return float(num_trees) / self.num_cells def _rand_bool(self, p): """ Random boolean distributed according to p, less than p will be True """ return np.random.uniform(size=self.trees.shape) < p def grow_trees(self): """ Growing trees. """ growth_sites = self._rand_bool(self.p_sapling) self.trees[growth_sites] = True def advance_one_step(self): """ Advance one step """ self.grow_trees() ``` * 将与燃烧相关的属性都被转移到了子类中去。 * 修改两类的构造方法,将闪电概率放到子类的构造方法上,同时在子类的构造方法中,用 `super` 调用父类的构造方法。 * 修改 `advance_one_step()`,父类中只进行生长,在子类中用 `super` 调用父类的 `advance_one_step()` 方法,并添加燃烧的部分。 In [4]: ```py class BurnableForest(Forest): """ Burnable forest support fires """ def __init__(self, p_lightning=5.0e-6, **kwargs): super(BurnableForest, self).__init__(**kwargs) self.p_lightning = p_lightning self.fires = np.zeros((self.size), dtype=bool) def advance_one_step(self): """ Advance one step """ super(BurnableForest, self).advance_one_step() self.start_fires() self.burn_trees() @property def fire_fraction(self): """ Fraction of fires """ num_fires = self.fires.sum() return float(num_fires) / self.num_cells def start_fires(self): """ Start of fire. """ lightning_strikes = (self._rand_bool(self.p_lightning) & self.trees) self.fires[lightning_strikes] = True def burn_trees(self): """ Burn trees. """ fires = np.zeros((self.size[0] + 2, self.size[1] + 2), dtype=bool) fires[1:-1, 1:-1] = self.fires north = fires[:-2, 1:-1] south = fires[2:, 1:-1] east = fires[1:-1, :-2] west = fires[1:-1, 2:] new_fires = (north | south | east | west) & self.trees self.trees[self.fires] = False self.fires = new_fires ``` 测试父类: In [5]: ```py forest = Forest() forest.grow_trees() print forest.tree_fraction ``` ```py 0.00284444444444 ``` 测试子类: In [6]: ```py burnable_forest = BurnableForest() ``` 调用自己和父类的方法: In [7]: ```py burnable_forest.grow_trees() burnable_forest.start_fires() burnable_forest.burn_trees() print burnable_forest.tree_fraction ``` ```py 0.00235555555556 ``` 查看变化: In [8]: ```py import matplotlib.pyplot as plt %matplotlib inline forest = Forest() forest2 = BurnableForest() tree_fractions = [] for i in range(2500): forest.advance_one_step() forest2.advance_one_step() tree_fractions.append((forest.tree_fraction, forest2.tree_fraction)) plt.plot(tree_fractions) plt.show() ``` ![]() `__str__` 和 `__repr__` 中 `self.__class__` 会根据类型不同而不同: In [9]: ```py forest ``` Out[9]: ```py Forest(size=(150, 150)) ``` In [10]: ```py forest2 ``` Out[10]: ```py BurnableForest(size=(150, 150)) ``` In [11]: ```py print forest ``` ```py Forest ``` In [12]: ```py print forest2 ``` ```py BurnableForest ```