# Theano tensor 模块:操作符和逐元素操作 ## 操作符 In [1]: ```py import theano from theano import tensor as T ``` ```py Using gpu device 1: Tesla C2075 (CNMeM is disabled) ``` `tensor` 类型支持很多基本的操作: In [2]: ```py # 两个整形三维张量 a, b = T.itensor3("a"), T.itensor3("b") ``` ### 算术操作 In [3]: ```py print theano.pp(a + 3) # T.add(a, 3) -> itensor3 print theano.pp(3 - a) # T.sub(3, a) print theano.pp(a * 3.5) # T.mul(a, 3.5) -> ftensor3 or dtensor3 (depending on casting) print theano.pp(2.2 / a) # T.truediv(2.2, a) print theano.pp(2.2 // a) # T.intdiv(2.2, a) print theano.pp(2.2**a) # T.pow(2.2, a) print theano.pp(b % a) # T.mod(b, a) ``` ```py (a + TensorConstant{3}) (TensorConstant{3} - a) (a * TensorConstant{3.5}) (TensorConstant{2.20000004768} / a) (TensorConstant{2.20000004768} // a) (TensorConstant{2.20000004768} ** a) mod(b, a) ``` ### 比特操作 In [4]: ```py print theano.pp(a & b) # T.and_(a,b) bitwise and (alias T.bitwise_and) print theano.pp(a ^ 1) # T.xor(a,1) bitwise xor (alias T.bitwise_xor) print theano.pp(a | b) # T.or_(a,b) bitwise or (alias T.bitwise_or) print theano.pp(~a) # T.invert(a) bitwise invert (alias T.bitwise_not) ``` ```py and_(a, b) xor(a, TensorConstant{1}) or_(a, b) invert(a) ``` ### 原地操作 `Theano` 不支持原地操作如 `+=` 等,`Theano` 的图优化解构会自动决定是否使用原地操作。如果需要更新变量的值,可以考虑使用共享变量 `theano.shared`。 ## 逐元素操作 ### 类型转换 `T.cast(x, dtype)` 用于类型转换: In [5]: ```py x = T.matrix() x_as_int = T.cast(x, 'int32') ``` `T.cast(x, dtype)` 的机制与 `numpy.asarray(x, dtype)` 的机制类似,只有 `dtype` 不同时才会创建新的变量: In [6]: ```py print x_as_int is x print T.cast(x, theano.config.floatX) is x ``` ```py False True ``` 复数取实部,虚部,角度,模: * `T.real(a)` * `T.imag(a)` * `T.angle(a)` * `T.abs_(a)` ### 比较 `Theano` 的比较操作也是逐元素的: * `T.lt(a, b)` : < * `T.gt(a, b)` : > * `T.le(a, b)` : <= * `T.ge(a, b)` : >= * `T.eq(a, b)` : == * `T.neq(a, b)` : != `Theano` 中没有 `bool` 类型,所有的 `bool` 类型都用 `int8` 表示。 In [7]: ```py x, y = T.dmatrices('x','y') print theano.pp(T.le(x, y)) ``` ```py le(x, y) ``` 除此之外,还有另一些与 `numpy` 类似的用法: * `T.isnan(a)` : 是否 NAN * `T.isinf(a)` : 是否 INF * `T.isclose(a, b)` :浮点数是否接近 * `T.allclose(a, b)` :浮点数是否很接近 ### 条件 `T.switch(cond, ift, iff)` 选择 `ift (if ture)` 和 `iff (if false)`。 `T.where(cond, ift, iff)` 与 `switch` 一致。 `T.clip(x, min, max)` 低于 `min` 的部分变成 `min`,超过 `max` 的部分变成 `max`。 ### 数学操作 In [8]: ```py a, b = T.matrices("a", "b") print theano.pp(T.maximum(a, b)) # max(a, b) print theano.pp(T.minimum(a, b)) # min(a, b) print theano.pp(T.neg(a)) # -a print theano.pp(T.inv(a)) # 1.0/a print theano.pp(T.exp(a)) print theano.pp(T.log(a)), theano.pp(T.log2(a)), theano.pp(T.log10(a)) # log10(a) print theano.pp(T.sgn(a)) # sgn(a) print theano.pp(T.floor(a)) # floor(a) print theano.pp(T.ceil(a)) # ceil(a) print theano.pp(T.round(a)) # round(a) print theano.pp(T.iround(a)) # iround(a) print theano.pp(T.sqr(a)) # sqr(a) print theano.pp(T.sqrt(a)) # sqrt(a) print theano.pp(T.cos(a)), theano.pp(T.sin(a)), theano.pp(T.tan(a)) print theano.pp(T.cosh(a)), theano.pp(T.sinh(a)), theano.pp(T.tanh(a)) # tan(a) print theano.pp(T.erf(a)), theano.pp(T.erfc(a)) # erf(a), erfc(a) print theano.pp(T.erfinv(a)), theano.pp(T.erfcinv(a)) print theano.pp(T.gamma(a)) # gamma(a) print theano.pp(T.gammaln(a)) # log(gamma(a)) print theano.pp(T.psi(a)) # digamma(a) ``` ```py maximum(a, b) minimum(a, b) (-a) inv(a) exp(a) log(a) log2(a) log10(a) sgn(a) floor(a) ceil(a) round_half_away_from_zero(a) int64(round_half_away_from_zero(a)) sqr(a) sqrt(a) cos(a) sin(a) tan(a) cosh(a) sinh(a) tanh(a) erf(a) erfc(a) erfinv(a) erfcinv(a) gamma(a) gammaln(a) psi(a) ``` 其中 `erf, erfc` 定义如下: [https://en.wikipedia.org/wiki/Error_function](https://en.wikipedia.org/wiki/Error_function) $$ \operatorname{erf}(x) = \frac{2}{\sqrt\pi} \int_0^x e^{-t^2} dt $$$$ \begin{align} \operatorname{erfc}(x) & = 1-\operatorname{erf}(x) \\ & = \frac{2}{\sqrt\pi} \int_x^{\infty} e^{-t^2}\,\mathrm dt \\ & = e^{-x^2} \operatorname{erfcx}(x) \end{align} $$ `erfinv, erfcinv` 为其反函数:1 [https://en.wikipedia.org/wiki/Error_function#Inverse_functions](https://en.wikipedia.org/wiki/Error_function#Inverse_functions) ### Broadcasting ![](img/ba74cf5bc8ea89099c03b3d738f92cf1.jpg) 图示如上。 ## 线性代数 矩阵乘法:`T.dot(x, y)` 向量外积:`T.outer(x, y)` 张量乘法:`tensordot(a, b, axes=2)` `axes` 参数表示 `a` `b` 对应要去掉的维度。 In [9]: ```py import numpy as np a = np.random.random((2,3,4)) b = np.random.random((5,6,4,3)) #tensordot c = np.tensordot(a, b, [[1,2],[3,2]]) #loop replicating tensordot a0, a1, a2 = a.shape b0, b1, _, _ = b.shape cloop = np.zeros((a0,b0,b1)) #loop over non-summed indices -- these exist #in the tensor product. for i in range(a0): for j in range(b0): for k in range(b1): #loop over summed indices -- these don't exist #in the tensor product. for l in range(a1): for m in range(a2): cloop[i,j,k] += a[i,l,m] * b[j,k,m,l] assert np.allclose(c, cloop) print a.shape, b.shape print c.shape ``` ```py (2, 3, 4) (5, 6, 4, 3) (2, 5, 6) ```