# 2.2 – 变量 (Variable) ## 什么是 Variable 在 Torch 中的 Variable 就是一个存放会变化的值的地理位置. 里面的值会不停的变化. 就像一个裝鸡蛋的篮子, 鸡蛋数会不停变动. 那谁是里面的鸡蛋呢, 自然就是 Torch 的 Tensor 咯. **如果用一个 Variable 进行计算, 那返回的也是一个同类型的 Variable.** 我们定义一个 Variable: ```py import torch from torch.autograd import Variable # torch 中 Variable 模块 # 先生鸡蛋 tensor = torch.FloatTensor([[1,2],[3,4]]) # 把鸡蛋放到篮子里, requires_grad是参不参与误差反向传播, 要不要计算梯度 variable = Variable(tensor, requires_grad=True) print(tensor) """ 1 2 3 4 [torch.FloatTensor of size 2x2] """ print(variable) """ Variable containing: 1 2 3 4 [torch.FloatTensor of size 2x2] """ ``` ## Variable 计算, 梯度 我们再对比一下 tensor 的计算和 variable 的计算.\’ ```py t_out = torch.mean(tensor*tensor) # x^2 v_out = torch.mean(variable*variable) # x^2 print(t_out) print(v_out) # 7.5 ``` 到目前为止, 我们看不出什么不同, **但是时刻记住, Variable 计算时, 它在背景幕布后面一步步默默地搭建着一个庞大的系统, 叫做计算图, computational graph. 这个图是用来干嘛的? 原来是将所有的计算步骤 (节点) 都连接起来, 最后进行误差反向传递的时候, 一次性将所有 variable 里面的修改幅度 (梯度) 都计算出来, 而 tensor 就没有这个能力啦.** v_out = torch.mean(variable*variable) 就是在计算图中添加的一个计算步骤, 计算误差反向传递的时候有他一份功劳, 我们就来举个例子: ```py v_out.backward() # 模拟 v_out 的误差反向传递 # 下面两步看不懂没关系, 只要知道 Variable 是计算图的一部分, 可以用来传递误差就好. # v_out = 1/4 * sum(variable*variable) 这是计算图中的 v_out 计算步骤 # 针对于 v_out 的梯度就是, d(v_out)/d(variable) = 1/4*2*variable = variable/2 print(variable.grad) # 初始 Variable 的梯度 \'\'\' 0.5000 1.0000 1.5000 2.0000 \'\'\' ``` #### 获取 Variable 里面的数据 直接 print(variable) 只会输出 Variable 形式的数据, 在很多时候是用不了的(比如想要用 plt 画图), 所以我们要转换一下, 将它变成 tensor 形式. ```py print(variable) # Variable 形式 """ Variable containing: 1 2 3 4 [torch.FloatTensor of size 2x2] """ print(variable.data) # tensor 形式 """ 1 2 3 4 [torch.FloatTensor of size 2x2] """ print(variable.data.numpy()) # numpy 形式 """ [[ 1\. 2.] [ 3\. 4.]] """ ``` 文章来源:[莫烦](https://morvanzhou.github.io/)