#!/usr/bin/python # coding: utf8 ''' Created on Mar 24, 2011 Ch 11 code @author: Peter ''' from numpy import * def loadDataSet(): return [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]] def createC1(dataSet): C1 = [] for transaction in dataSet: for item in transaction: if not [item] in C1: C1.append([item]) C1.sort() return map(frozenset, C1) # use frozen set so we # can use it as a key in a dict def scanD(D, Ck, minSupport): ssCnt = {} for tid in D: for can in Ck: # s.issubset(t) 测试是否 s 中的每一个元素都在 t 中 if can.issubset(tid): if not ssCnt.has_key(can): ssCnt[can]=1 else: ssCnt[can] += 1 numItems = float(len(D)) retList = [] supportData = {} for key in ssCnt: support = ssCnt[key]/numItems if support >= minSupport: retList.insert(0, key) supportData[key] = support return retList, supportData def aprioriGen(Lk, k): #creates Ck retList = [] lenLk = len(Lk) for i in range(lenLk): for j in range(i+1, lenLk): L1 = list(Lk[i])[:k-2]; L2 = list(Lk[j])[:k-2] L1.sort(); L2.sort() if L1==L2: #if first k-2 elements are equal retList.append(Lk[i] | Lk[j]) #set union return retList def apriori(dataSet, minSupport = 0.5): # 冻结每一行数据 C1 = createC1(dataSet) D = map(set, dataSet) # 计算支持support L1, supportData = scanD(D, C1, minSupport) print("outcome: ", supportData) L = [L1] k = 2 while (len(L[k-2]) > 0): Ck = aprioriGen(L[k-2], k) Lk, supK = scanD(D, Ck, minSupport)#scan DB to get Lk supportData.update(supK) L.append(Lk) k += 1 return L, supportData def main(): # project_dir = os.path.dirname(os.path.dirname(os.getcwd())) # 1.收集并准备数据 # dataMat, labelMat = loadDataSet("%s/resources/testSet.txt" % project_dir) # 1. 加载数据 dataSet = loadDataSet() print(dataSet) # 调用 apriori 做购物篮分析 apriori(dataSet, minSupport = 0.7) if __name__=="__main__": main() def generateRules(L, supportData, minConf=0.7): #supportData is a dict coming from scanD bigRuleList = [] for i in range(1, len(L)):#only get the sets with two or more items for freqSet in L[i]: H1 = [frozenset([item]) for item in freqSet] if (i > 1): rulesFromConseq(freqSet, H1, supportData, bigRuleList, minConf) else: calcConf(freqSet, H1, supportData, bigRuleList, minConf) return bigRuleList def calcConf(freqSet, H, supportData, brl, minConf=0.7): prunedH = [] #create new list to return for conseq in H: conf = supportData[freqSet]/supportData[freqSet-conseq] #calc confidence if conf >= minConf: print freqSet-conseq,'-->',conseq,'conf:',conf brl.append((freqSet-conseq, conseq, conf)) prunedH.append(conseq) return prunedH def rulesFromConseq(freqSet, H, supportData, brl, minConf=0.7): m = len(H[0]) if (len(freqSet) > (m + 1)): #try further merging Hmp1 = aprioriGen(H, m+1)#create Hm+1 new candidates Hmp1 = calcConf(freqSet, Hmp1, supportData, brl, minConf) if (len(Hmp1) > 1): #need at least two sets to merge rulesFromConseq(freqSet, Hmp1, supportData, brl, minConf) def pntRules(ruleList, itemMeaning): for ruleTup in ruleList: for item in ruleTup[0]: print itemMeaning[item] print " -------->" for item in ruleTup[1]: print itemMeaning[item] print "confidence: %f" % ruleTup[2] print #print a blank line # from time import sleep # from votesmart import votesmart # votesmart.apikey = 'a7fa40adec6f4a77178799fae4441030' # #votesmart.apikey = 'get your api key first' # def getActionIds(): # actionIdList = []; billTitleList = [] # fr = open('recent20bills.txt') # for line in fr.readlines(): # billNum = int(line.split('\t')[0]) # try: # billDetail = votesmart.votes.getBill(billNum) #api call # for action in billDetail.actions: # if action.level == 'House' and \ # (action.stage == 'Passage' or action.stage == 'Amendment Vote'): # actionId = int(action.actionId) # print 'bill: %d has actionId: %d' % (billNum, actionId) # actionIdList.append(actionId) # billTitleList.append(line.strip().split('\t')[1]) # except: # print "problem getting bill %d" % billNum # sleep(1) #delay to be polite # return actionIdList, billTitleList # # def getTransList(actionIdList, billTitleList): #this will return a list of lists containing ints # itemMeaning = ['Republican', 'Democratic']#list of what each item stands for # for billTitle in billTitleList:#fill up itemMeaning list # itemMeaning.append('%s -- Nay' % billTitle) # itemMeaning.append('%s -- Yea' % billTitle) # transDict = {}#list of items in each transaction (politician) # voteCount = 2 # for actionId in actionIdList: # sleep(3) # print 'getting votes for actionId: %d' % actionId # try: # voteList = votesmart.votes.getBillActionVotes(actionId) # for vote in voteList: # if not transDict.has_key(vote.candidateName): # transDict[vote.candidateName] = [] # if vote.officeParties == 'Democratic': # transDict[vote.candidateName].append(1) # elif vote.officeParties == 'Republican': # transDict[vote.candidateName].append(0) # if vote.action == 'Nay': # transDict[vote.candidateName].append(voteCount) # elif vote.action == 'Yea': # transDict[vote.candidateName].append(voteCount + 1) # except: # print "problem getting actionId: %d" % actionId # voteCount += 2 # return transDict, itemMeaning