#!/usr/bin/python # coding:utf8 ''' Created 2017-04-25 Random Forest Algorithm on Sonar Dataset @author: Flying_sfeng/片刻 --- 源代码网址:http://www.tuicool.com/articles/iiUfeim Flying_sfeng博客地址:http://blog.csdn.net/flying_sfeng/article/details/64133822 在此表示感谢你的代码和注解, 我重新也完善了你的注解 ''' from random import seed, randrange, random # 导入csv文件 def loadDataSet(filename): dataset = [] with open(filename, 'r') as fr: for line in fr.readlines(): if not line: continue lineArr = [] for featrue in line.split(','): # strip()返回移除字符串头尾指定的字符生成的新字符串 str_f = featrue.strip() if str_f.isdigit(): # 将数据集的第column列转换成float形式 lineArr.append(float(str_f)) else: # 添加分类标签 lineArr.append(str_f) dataset.append(lineArr) return dataset def cross_validation_split(dataset, n_folds): """cross_validation_split(将数据集进行抽重抽样 n_folds 份,数据可以重复重复抽取,每一次list的元素是无重复的) Args: dataset 原始数据集 n_folds 数据集dataset分成n_flods份 Returns: dataset_split list集合,存放的是:将数据集进行抽重抽样 n_folds 份,数据可以重复重复抽取,每一次list的元素是无重复的 """ dataset_split = list() dataset_copy = list(dataset) #复制一份dataset,防止dataset的内容改变 fold_size = len(dataset) / n_folds for i in range(n_folds): fold = list() #每次循环fold清零,防止重复导入dataset_split while len(fold) < fold_size: #这里不能用if,if只是在第一次判断时起作用,while执行循环,直到条件不成立 # 有放回的随机采样,有一些样本被重复采样,从而在训练集中多次出现,有的则从未在训练集中出现,此则自助采样法。从而保证每棵决策树训练集的差异性 index = randrange(len(dataset_copy)) # 将对应索引index的内容从dataset_copy中导出,并将该内容从dataset_copy中删除。 # pop()函数用于移除列表中的一个元素(默认最后一个元素),并且返回该元素的值。 fold.append(dataset_copy.pop(index)) dataset_split.append(fold) # 由dataset分割出的n_folds个数据构成的列表,为了用于交叉验证 return dataset_split # Split a dataset based on an attribute and an attribute value #根据特征和特征值分割数据集 def test_split(index, value, dataset): left, right = list(), list() for row in dataset: if row[index] < value: left.append(row) else: right.append(row) return left, right # Calculate the Gini index for a split dataset def gini_index(groups, class_values): #个人理解:计算代价,分类越准确,则gini越小 gini = 0.0 for class_value in class_values: #class_values =[0,1] for group in groups: #groups=(left,right) size = len(group) if size == 0: continue proportion = [row[-1] for row in group].count(class_value) / float(size) gini += (proportion * (1.0 - proportion)) #个人理解:计算代价,分类越准确,则gini越小 return gini # 找出分割数据集的最优特征,得到最优的特征index,特征值row[index],以及分割完的数据groups(left,right) def get_split(dataset, n_features): class_values = list(set(row[-1] for row in dataset)) #class_values =[0,1] b_index, b_value, b_score, b_groups = 999, 999, 999, None features = list() while len(features) < n_features: index = randrange(len(dataset[0])-1) #往features添加n_features个特征(n_feature等于特征数的根号),特征索引从dataset中随机取 if index not in features: features.append(index) for index in features: #在n_features个特征中选出最优的特征索引,并没有遍历所有特征,从而保证了每课决策树的差异性 for row in dataset: groups = test_split(index, row[index], dataset) #groups=(left,right);row[index]遍历每一行index索引下的特征值作为分类值value,找出最优的分类特征和特征值 gini = gini_index(groups, class_values) if gini < b_score: b_index, b_value, b_score, b_groups = index, row[index], gini, groups #最后得到最优的分类特征b_index,分类特征值b_value,分类结果b_groups。b_value为分错的代价成本。 #print b_score return {'index':b_index, 'value':b_value, 'groups':b_groups} # Create a terminal node value #输出group中出现次数较多的标签 def to_terminal(group): outcomes = [row[-1] for row in group] #max()函数中,当key参数不为空时,就以key的函数对象为判断的标准; return max(set(outcomes), key=outcomes.count) # 输出group中出现次数较多的标签 # Create child splits for a node or make terminal #创建子分割器,递归分类,直到分类结束 def split(node, max_depth, min_size, n_features, depth): #max_depth = 10,min_size = 1,n_features = int(sqrt(len(dataset[0])-1)) left, right = node['groups'] del(node['groups']) # check for a no split if not left or not right: node['left'] = node['right'] = to_terminal(left + right) return # check for max depth if depth >= max_depth: #max_depth=10表示递归十次,若分类还未结束,则选取数据中分类标签较多的作为结果,使分类提前结束,防止过拟合 node['left'], node['right'] = to_terminal(left), to_terminal(right) return # process left child if len(left) <= min_size: node['left'] = to_terminal(left) else: node['left'] = get_split(left, n_features) #node['left']是一个字典,形式为{'index':b_index, 'value':b_value, 'groups':b_groups},所以node是一个多层字典 split(node['left'], max_depth, min_size, n_features, depth+1) #递归,depth+1计算递归层数 # process right child if len(right) <= min_size: node['right'] = to_terminal(right) else: node['right'] = get_split(right, n_features) split(node['right'], max_depth, min_size, n_features, depth+1) # Build a decision tree def build_tree(train, max_depth, min_size, n_features): """build_tree(创建一个决策树) Args: train 训练数据集 max_depth 决策树深度不能太深,不然容易导致过拟合 min_size 叶子节点的大小 n_features 选取的特征的个数 Returns: root 返回决策树 """ # 返回最有列和相关的信息 root = get_split(train, n_features) # 对左右2变的数据 进行递归的调用,由于最优特征使用过,所以在后面进行使用的时候,就没有意义了 # 例如: 性别-男女,对男使用这一特征就没任何意义了 split(root, max_depth, min_size, n_features, 1) return root # Make a prediction with a decision tree def predict(node, row): #预测模型分类结果 if row[node['index']] < node['value']: if isinstance(node['left'], dict): #isinstance是Python中的一个内建函数。是用来判断一个对象是否是一个已知的类型。 return predict(node['left'], row) else: return node['left'] else: if isinstance(node['right'], dict): return predict(node['right'], row) else: return node['right'] # Make a prediction with a list of bagged trees def bagging_predict(trees, row): """bagging_predict(bagging预测) Args: trees 决策树的集合 row 测试数据集的每一行数据 Returns: 返回随机森林中,决策树结果出现次数做大的 """ # 使用多个决策树trees对测试集test的第row行进行预测,再使用简单投票法判断出该行所属分类 predictions = [predict(tree, row) for tree in trees] return max(set(predictions), key=predictions.count) # Create a random subsample from the dataset with replacement def subsample(dataset, ratio): #创建数据集的随机子样本 """random_forest(评估算法性能,返回模型得分) Args: dataset 训练数据集 ratio 训练数据集的样本比例 Returns: sample 随机抽样的训练样本 """ sample = list() # 训练样本的按比例抽样。 # round() 方法返回浮点数x的四舍五入值。 n_sample = round(len(dataset) * ratio) while len(sample) < n_sample: # 有放回的随机采样,有一些样本被重复采样,从而在训练集中多次出现,有的则从未在训练集中出现,此则自助采样法。从而保证每棵决策树训练集的差异性 index = randrange(len(dataset)) sample.append(dataset[index]) return sample # Random Forest Algorithm def random_forest(train, test, max_depth, min_size, sample_size, n_trees, n_features): """random_forest(评估算法性能,返回模型得分) Args: train 训练数据集 test 测试数据集 max_depth 决策树深度不能太深,不然容易导致过拟合 min_size 叶子节点的大小 sample_size 训练数据集的样本比例 n_trees 决策树的个数 n_features 选取的特征的个数 Returns: predictions 每一行的预测结果,bagging 预测最后的分类结果 """ trees = list() # n_trees表示决策树的数量 for i in range(n_trees): # 随机抽样的训练样本, 随机采样保证了每棵决策树训练集的差异性 sample = subsample(train, sample_size) # 创建一个决策树 tree = build_tree(sample, max_depth, min_size, n_features) trees.append(tree) # 每一行的预测结果,bagging 预测最后的分类结果 predictions = [bagging_predict(trees, row) for row in test] return predictions # Calculate accuracy percentage def accuracy_metric(actual, predicted): #导入实际值和预测值,计算精确度 correct = 0 for i in range(len(actual)): if actual[i] == predicted[i]: correct += 1 return correct / float(len(actual)) * 100.0 # 评估算法性能,返回模型得分 def evaluate_algorithm(dataset, algorithm, n_folds, *args): """evaluate_algorithm(评估算法性能,返回模型得分) Args: dataset 原始数据集 algorithm 使用的算法 n_folds 树的个数 *args 其他的参数 Returns: scores 模型得分 """ # 将数据集进行抽重抽样 n_folds 份,数据可以重复重复抽取,每一次list的元素是无重复的 folds = cross_validation_split(dataset, n_folds) scores = list() # 每次循环从folds从取出一个fold作为测试集,其余作为训练集,遍历整个folds,实现交叉验证 for fold in folds: train_set = list(folds) train_set.remove(fold) # 将多个fold列表组合成一个train_set列表, 类似 union all """ In [20]: l1=[[1, 2, 'a'], [11, 22, 'b']] In [21]: l2=[[3, 4, 'c'], [33, 44, 'd']] In [22]: l=[] In [23]: l.append(l1) In [24]: l.append(l2) In [25]: l Out[25]: [[[1, 2, 'a'], [11, 22, 'b']], [[3, 4, 'c'], [33, 44, 'd']]] In [26]: sum(l, []) Out[26]: [[1, 2, 'a'], [11, 22, 'b'], [3, 4, 'c'], [33, 44, 'd']] """ train_set = sum(train_set, []) test_set = list() # fold表示从原始数据集dataset提取出来的测试集 for row in fold: row_copy = list(row) test_set.append(row_copy) row_copy[-1] = None predicted = algorithm(train_set, test_set, *args) actual = [row[-1] for row in fold] # 计算随机森林的预测结果的正确率 accuracy = accuracy_metric(actual, predicted) scores.append(accuracy) return scores if __name__ == '__main__': # 加载数据 dataset = loadDataSet('input/7.RandomForest/sonar-all-data.txt') # print dataset n_folds = 5 # 分成5份数据,进行交叉验证 max_depth = 20 # 调参(自己修改) #决策树深度不能太深,不然容易导致过拟合 min_size = 1 # 决策树的叶子节点最少的元素数量 sample_size = 1.0 # 做决策树时候的样本的比例 # n_features = int(sqrt(len(dataset[0])-1)) n_features =15 # 调参(自己修改) #准确性与多样性之间的权衡 for n_trees in [1, 5, 10]: # 理论上树是越多越好 scores = evaluate_algorithm(dataset, random_forest, n_folds, max_depth, min_size, sample_size, n_trees, n_features) # 每一次执行本文件时都能产生同一个随机数 seed(1) print 'random=', random() print 'Trees: %d' % n_trees print 'Scores: %s' % scores print 'Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores)))