Files
ailearning/docs/da/007.md
2020-10-19 21:08:55 +08:00

31 KiB
Raw Blame History

Python 入门演示

简单的数学运算

整数相加,得到整数:

In [1]:

2 + 2

Out[1]:

4

浮点数相加,得到浮点数:

In [2]:

2.0 + 2.5

Out[2]:

4.5

整数和浮点数相加,得到浮点数:

In [3]:

2 + 2.5

Out[3]:

4.5

变量赋值

Python使用<变量名>=<表达式>的方式对变量进行赋值

In [4]:

a = 0.2

字符串 String

字符串的生成,单引号与双引号是等价的:

In [5]:

s = "hello world"
s

Out[5]:

'hello world'

In [6]:

s = 'hello world'
s

Out[6]:

'hello world'

三引号用来输入包含多行文字的字符串:

In [7]:

s = """hello
world"""
print s

hello
world

In [8]:

s = '''hello
world'''
print s

hello
world

字符串的加法:

In [9]:

s = "hello" + " world"
s

Out[9]:

'hello world'

字符串索引:

In [10]:

s[0]

Out[10]:

'h'

In [11]:

s[-1]

Out[11]:

'd'

In [12]:

s[0:5]

Out[12]:

'hello'

字符串的分割:

In [13]:

s = "hello world"
s.split()

Out[13]:

['hello', 'world']

查看字符串的长度:

In [14]:

len(s)

Out[14]:

11

列表 List

Python用[]来生成列表

In [15]:

a = [1, 2.0, 'hello', 5 + 1.0]
a

Out[15]:

[1, 2.0, 'hello', 6.0]

列表加法:

In [16]:

a + a

Out[16]:

[1, 2.0, 'hello', 6.0, 1, 2.0, 'hello', 6.0]

列表索引:

In [17]:

a[1]

Out[17]:

2.0

列表长度:

In [18]:

len(a)

Out[18]:

4

向列表中添加元素:

In [19]:

a.append("world")
a

Out[19]:

[1, 2.0, 'hello', 6.0, 'world']

集合 Set

Python用{}来生成集合,集合中不含有相同元素。

In [20]:

s = {2, 3, 4, 2}
s

Out[20]:

{2, 3, 4}

集合的长度:

In [21]:

len(s)

Out[21]:

3

向集合中添加元素:

In [22]:

s.add(1)
s

Out[22]:

{1, 2, 3, 4}

集合的交:

In [23]:

a = {1, 2, 3, 4}
b = {2, 3, 4, 5}
a & b

Out[23]:

{2, 3, 4}

并:

In [24]:

a | b

Out[24]:

{1, 2, 3, 4, 5}

差:

In [25]:

a - b

Out[25]:

{1}

对称差:

In [26]:

a ^ b

Out[26]:

{1, 5}

字典 Dictionary

Python用{key:value}来生成Dictionary。

In [27]:

d = {'dogs':5, 'cats':4}
d

Out[27]:

{'cats': 4, 'dogs': 5}

字典的大小

In [28]:

len(d)

Out[28]:

2

查看字典某个键对应的值:

In [29]:

d["dogs"]

Out[29]:

5

修改键值:

In [30]:

d["dogs"] = 2
d

Out[30]:

{'cats': 4, 'dogs': 2}

插入键值:

In [31]:

d["pigs"] = 7
d

Out[31]:

{'cats': 4, 'dogs': 2, 'pigs': 7}

所有的键:

In [32]:

d.keys()

Out[32]:

['cats', 'dogs', 'pigs']

所有的值:

In [33]:

d.values()

Out[33]:

[4, 2, 7]

所有的键值对:

In [34]:

d.items()

Out[34]:

[('cats', 4), ('dogs', 2), ('pigs', 7)]

数组 Numpy Arrays

需要先导入需要的包Numpy数组可以进行很多列表不能进行的运算。

In [35]:

from numpy import array
a = array([1, 2, 3, 4])
a

Out[35]:

array([1, 2, 3, 4])

加法:

In [36]:

a + 2

Out[36]:

array([3, 4, 5, 6])

In [37]:

a + a

Out[37]:

array([2, 4, 6, 8])

画图 Plot

Python提供了一个很像MATLAB的绘图接口。

In [38]:

%matplotlib inline
from matplotlib.pyplot import plot
plot(a, a**2)

Out[38]:

[<matplotlib.lines.Line2D at 0x9fb6fd0>]

![]( AAALEgAACxIB0t1+/AAAEy1JREFUeJzt3X+wXGV5wPHvQ8DRyBRqHYk2dAJMgz8I/qhVhlLZgpnJ RIvOWK1MMQRHxhG1alNbsR25jjOlTtv4A3WESiAWSKdVhpEpDUFkMQ4SrQYSJNba0RrtJChSWktb k7lP/9i96e269+7u2V/nnP1+ZjKc3T337PvOy33y5nmePRuZiSSp2o6b9gAkScMzmEtSDRjMJakG DOaSVAMGc0mqAYO5JNXAssE8IrZFxOGI2N/x/Nsj4kBEPBQRHxzvECVJvfTamd8AbFj8RET8BnAR cHZmngX8+ZjGJknq07LBPDN3A491PP0W4OrMPNI+54djGpskqU9Fcua/DLwsIu6PiGZEvHjUg5Ik Deb4gj/z85l5TkT8KvA3wOmjHZYkaRBFgvn3gVsBMvOrETEfEb+QmY8uPikivOmLJBWQmTHozxRJ s9wGXAAQEWuBJ3UG8kUDqu2fq666aupjcH7Ob9bmVsf5fe97yVlnJW99a3L0aPE9cK/WxB3AfcDa iDgYEZcB24DT2+2KO4BNhd9dkmbYgw/CuefC5s1wzTWwYkXxay2bZsnMi5d46Q3F31KStGsXXHIJ fPzj8NrXDn89PwFaUKPRmPYQxsr5VVed5wb1mN+2bbBpE9x662gCOUBkjqdOGRE5rmtLUhVlwtwc 3HQT3HEHnHnmz54TEWSBAmiRbhZJ0oB++lO4/HI4cADuuw9OOWW01zeYS9KYPf44vOY18NSnwj33 tP47aubMJWmMDh6E886DZz+7lSMfRyAHg7kkjc0oWw97Mc0iSWMw6tbDXtyZS9KIjaP1sBd35pI0 IotbD++9t3vr4bgYzCVpBMbdetiLwVyShjSJ1sNezJlL0hAm1XrYi8FckgqaZOthL6ZZJKmASbce 9uLOXJIGNI3Ww17cmUtSn6bZetiLwVyS+jDt1sNeDOaS1EMZWg97MWcuScsoS+thL72+0HlbRBxu f3lz52tbImI+Ip42vuFJ0vSUqfWwl1478xuADZ1PRsSpwHrgX8YxKEmatl27YP162LoVtmyBGPiL 3CZr2WCembuBx7q8tBX4g7GMSJKmrIyth70MXACNiFcB38/MfVH2v6okaQBlbj3sZaBgHhErgffS SrEce3qkI5KkKSh762Evg+7MzwDWAA+2d+Wrga9FxEsy85HOk+fm5o4dNxoNGo1G0XFK0thMs/Ww 2WzSbDaHvk5k5vInRKwBbs/MdV1e+w7wK5n54y6vZa9rS9K0HTwIGzfC+efDRz4y/Y6ViCAzB854 9GpN3AHcB6yNiIMRcVnHKUZrSZVVpdbDXnruzAtf2J25pBIr210PF4xlZy5JdVTF1sNevDeLpJlR 5dbDXgzmkmZC1VsPezGYS6q9Ktz1cFjmzCXVWlXuejgsg7mk2qpT62Evplkk1VJZWw/HxZ25pNqp Y+thL+7MJdVGnVsPezGYS6qFurce9mIwl1R5s9B62Is5c0mVNiuth70YzCVV1iy1HvZimkVSJc1a 62Ev7swlVc4sth724s5cUmXMcuthLwZzSZUw662HvRjMJZWerYe9mTOXVGq2HvanZzCPiG0RcTgi 9i967s8i4kBEPBgRt0bESeMdpqRZZOth//rZmd8AbOh4bhfwvMx8PvAt4MpRD0zSbNu1C9avh61b YcsWiIG/4ni29AzmmbkbeKzjubsyc779cA+wegxjkzSjbD0c3CgKoG8EdozgOpJmnK2HxQ0VzCPi j4CfZuYt3V6fm5s7dtxoNGg0GsO8naQam9XWw2azSbPZHPo6kZm9T4pYA9yemesWPbcZuBy4MDP/ u8vPZD/XlqTFrYe33DLbHSsRQWYOXCEo1JoYERuAdwOv6hbIJalfth6ORj+tiTuA+4AzI+JgRLwR uAY4EbgrIvZGxCfGPE5JNWTr4ej0lWYpdGHTLJKW4V0Pu5tomkWShmHr4eh5bxZJE2Pr4fgYzCVN xKy2Hk6KwVzS2HnXw/EzZy5prGw9nAyDuaSxsfVwckyzSBoLWw8ny525pJGz9XDy3JlLGhlbD6fH YC5pJBa3Hn75y/CMZ0x7RLPFYC5paLYeTp85c0lDsfWwHAzmkgqz9bA8TLNIKsTWw3JxZy5pYLYe lo87c0l9s/WwvAzmkvpi62G5Gcwl9WTrYfmZM5e0LFsPq2HZYB4R2yLicETsX/Tc0yLiroj4VkTs ioiTxz9MSdNg62F19NqZ3wBs6HjuPcBdmbkWuLv9WFLN7NoF69fD1q2wZQvEwF8xrElaNphn5m7g sY6nLwK2t4+3A68ew7gkTZGth9VTpAB6SmYebh8fBvwmP6kmbD2srqG6WTIzIyKXen1ubu7YcaPR oNFoDPN2ksbI1sPpaDabNJvNoa8TmUvG4tYJEWuA2zNzXfvxN4FGZh6KiGcC92Tms7v8XPa6tqRy WNx6eMstdqxMU0SQmQNXKIq0Jn4OuLR9fClwW4FrSCoJWw/roVdr4g7gPuDMiDgYEZcBfwqsj4hv ARe0H0uqIFsP66NnmqXwhU2zSKXmXQ/LaZJpFkkVZ+th/XhvFmmG2HpYXwZzaUbYelhvBnNpBnjX w/ozZy7VnK2Hs8FgLtWYrYezwzSLVFO2Hs4Wd+ZSDdl6OHvcmUs1Mj8P73+/rYezyGAu1cT+/fDm N7fy4rYezh7TLFLFPfEEXHklXHghXHppa0duIJ89BnOpwnbuhLPOgu9+F/bta+3Mj/O3eiaZZpEq 6NAheOc74StfgU98AjZ0flOvZo5/h0sVMj8Pn/wknH02nH46PPSQgVwt7sylilgocEbAF77QSq9I C9yZSyXXWeDcvdtArp9lMJdKzAKn+mWaRSohC5walH/HSyVigVNFFd6ZR8SVwCXAPLAfuCwz/2dU A5NmjQVODaPQzjwi1gCXAy/KzHXACuD1oxuWNDsscGoUiqZZ/h04AqyMiOOBlcAPRjYqaUZY4NSo FEqzZOaPI+IvgO8B/wXcmZmfH+nIpBqzwKlRKxTMI+IM4J3AGuBx4G8j4ncy8+bF583NzR07bjQa NBqNouOUamF+Hq67Dt73PnjTm1r3HV+5ctqj0jQ1m02azebQ14nMHPyHIn4bWJ+Zb2o/fgNwTma+ ddE5WeTaUl0tLnBee615cXUXEWRmDPpzRbNz3wTOiYinREQALwceLngtqdYscGoSCgXzzHwQ+DTw D8C+9tPXjWpQUl1Y4NSkFEqz9HVh0yyaYRY4VdSk0yySuvATnJoW780ijYif4NQ0uTOXhmSBU2Vg MJeGYIFTZWGaRSrAAqfKxj2ENICFAue6dXDaaRY4VR7uzKU+LRQ4oVXgXLduuuORFnNnLvXQWeD8 0pcM5Cofg7m0DAucqgrTLFIXFjhVNe4xpEUscKqq3JlLbRY4VWXuzDXzLHCqDgzmmmkWOFUXplk0 kyxwqm7cg2imWOBUXbkz18ywwKk6c2eu2rPAqVlgMFetWeDUrCicZomIk4FPAc8DEnhjZt4/qoFJ wzh0CN71LtizxwKnZsMwe5SPAHdk5nOAs4EDoxmSVNziAueaNRY4NTsiMwf/oYiTgL2Zefoy52SR a0tFLS5wXnuteXFVU0SQmTHozxXdmZ8G/DAiboiIr0fEX0bEyoLXkoZigVMqnjM/HngR8LbM/GpE fBh4D/C+xSfNzc0dO240GjQajYJvJ3W3cydccQW89KWtAueqVdMekTSYZrNJs9kc+jpF0yyrgC9n 5mntx+cB78nMVy46xzSLxsYCp+pqommWzDwEHIyIte2nXg58o8i1pEFY4JS6G+YToG8Hbo6IJwH/ DFw2miFJ3fkJTmlphdIsfV3YNItG5Ikn4AMfgOuvb/338sv94I/qa9LdLNJE+AlOqT/eaEulZIFT Gox7HJWKBU6pGHfmKg0LnFJx7sw1dQuf4LzgAj/BKRVlMNdULS5wLuzMLXBKgzPNoqmwwCmNlnsg TZQFTmk83JlrYixwSuPjzlxjZ4FTGj+DucbKAqc0GaZZNBYWOKXJco+kkbLAKU2HO3ONjAVOaXrc mWtoFjil6TOYaygWOKVyMM2iQixwSuXiHkoDscAplZM7c/XNAqdUXkPtzCNiRUTsjYjbRzUglY8F Tqn8hk2zvAN4GPCbm2vKAqdUDYV/LSNiNbAR+BQw8DdJq9wOHYKLL4YrrmgVOHfsgFWrpj0qSUsZ Zo/1IeDdwPyIxqISePRR2LrVAqdUNYUKoBHxSuCRzNwbEY2lzpubmzt23Gg0aDSWPFVTdOQI3Hkn 3HgjfP7zsHGjBU5pUprNJs1mc+jrRObg6e6I+BPgDcBR4MnAzwGfzcxNi87JItfW5OzfD9u3w003 wRlnwObN8LrXwUknTXtk0uyKCDJz4NR1oWDe8cbnA7+fmb/Z8bzBvIQefbSV/77xRjh8GDZtanWo rF077ZFJguLBfFR95kbtEutMo7ziFXD11a1WwxUrpj06SaMw9M58yQu7M5860yhS9Ux7Z66S6JZG +eIXTaNIdefOvAa6pVE2bzaNIlXR1AqgS17YYD52plGk+jHNMiNMo0jqxp15BZhGkWaHaZYaMo0i zR7TLDVhGkVSEe7MS8A0iqQFplkqyDSKpE6mWSrCNIqkcXBnPgGmUST1yzRLCZlGkTQo0ywlYRpF 0jS4Mx8B0yiSRsU0yxSYRpE0aqZZJsQ0iqQycmfehyNHYOfOVgC/+27TKJLGxzTLGOzf3wrgN99s GkXSZEw8zRIRpwKfBp5B6ztAr8vMjxa9Xll0S6Pcey+ceea0RyZJSyu8M4+IVcCqzHwgIk4Evga8 OjMPtF+vzM7cNIqkspj4zjwzDwGH2sc/iYgDwLOAA0WvOWnd0ijbtplGkVQ9I+lmiYg1wAuBPaO4 3jiZRpFUR0MH83aK5TPAOzLzJ8MPafS6pVGuvto0iqT6GCqYR8QJwGeBmzLzts7X5+bmjh03Gg0a jcYwbzcw0yiSyq7ZbNJsNoe+zjAF0AC2A49m5ru6vD6VAmi3NMqmTaZRJFXDxPvMI+I84IvAPlqt iQBXZubO9usTC+Z2o0iqi5n80JAf6pFUNzNzb5Yf/ej/0iiPPGI3iiRBRXbmplEkzYpapllMo0ia NbVJs5hGkaTBlWJnbhpFkloqmWYxjSJJ/19l0iymUSRp9CayMzeNIkn9KWWaZd++NI0iSQMoZTBf vTq9N4okDaCUwfzo0TSNIkkDKBrMjxvHYBYYyCVpMsYazCVJk2Ewl6QaMJhLUg0YzCWpBgzmklQD BnNJqgGDuSTVQOFgHhEbIuKbEfFPEfGHoxyUJGkwhYJ5RKwAPgZsAJ4LXBwRzxnlwMqu2WxOewhj 5fyqq85zg/rPr6iiO/OXAN/OzO9m5hHgr4FXjW5Y5Vf3/6GcX3XVeW5Q//kVVTSY/yJwcNHj77ef kyRNQdFgPp67c0mSCil018SIOAeYy8wN7cdXAvOZ+cFF5xjwJamAid0CNyKOB/4RuBD4V+ArwMWZ eWDgi0mShlboO0Az82hEvA24E1gBXG8gl6TpGduXU0iSJmeoT4BGxLaIOBwR+5c556PtDxY9GBEv HOb9Jq3X/CKiERGPR8Te9p8/nvQYhxERp0bEPRHxjYh4KCJ+d4nzKreG/cytyusXEU+OiD0R8UBE PBwRVy9xXuXWDvqbX5XXb0FErGiP/fYlXu9//TKz8B/g14EXAvuXeH0jcEf7+KXA/cO836T/9DG/ BvC5aY9ziPmtAl7QPj6RVh3kOXVYwz7nVvX1W9n+7/HA/cB5dVi7AeZX6fVrz+H3gJu7zWPQ9Rtq Z56Zu4HHljnlImB7+9w9wMkRccow7zlJfcwPYOCqc1lk5qHMfKB9/BPgAPCsjtMquYZ9zg2qvX5P tA+fRKt29eOOUyq5dgv6mB9UeP0iYjWtgP0pus9joPUb9422un24aPWY33OSEji3/U+gOyLiudMe UFERsYbWv0L2dLxU+TVcZm6VXr+IOC4iHgAOA/dk5sMdp1R67fqYX6XXD/gQ8G5gfonXB1q/Sdw1 sfNvnDpVXL8OnJqZzweuAW6b8ngKiYgTgc8A72jvYn/mlI7HlVnDHnOr9Ppl5nxmvoDWL/jLIqLR 5bTKrl0f86vs+kXEK4FHMnMvy//rou/1G3cw/wFw6qLHq9vP1UJm/sfCPwUz8++BEyLiaVMe1kAi 4gTgs8BNmdntl6Gya9hrbnVYP4DMfBz4O+DFHS9Vdu0WW2p+FV+/c4GLIuI7wA7ggoj4dMc5A63f uIP554BNcOxTo/+WmYfH/J4TExGnRES0j19Cq9WzW16vlNpjvx54ODM/vMRplVzDfuZW5fWLiKdH xMnt46cA64G9HadVcu2gv/lVef0y872ZeWpmnga8HvhCZm7qOG2g9Sv0oaEFEbEDOB94ekQcBK4C TmgP9trMvCMiNkbEt4H/BC4b5v0mrdf8gN8C3hIRR4EnaC1KlfwacAmwLyIWflHeC/wSVH4Ne86N aq/fM4HtEXEcrU3ZX2Xm3RHxZqj82kEf86Pa69cpAYZZPz80JEk14NfGSVINGMwlqQYM5pJUAwZz SaoBg7kk1YDBXJJqwGAuSTVgMJekGvhf3kAwE/Ra4D0AAAAASUVORK5CYII= )

循环 Loop

In [39]:

line = '1 2 3 4 5'
fields = line.split()
fields

Out[39]:

['1', '2', '3', '4', '5']

In [40]:

total = 0
for field in fields:
    total += int(field)
total

Out[40]:

15

Python中有一种叫做列表推导式(List comprehension)的用法:

In [41]:

numbers = [int(field) for field in fields]
numbers

Out[41]:

[1, 2, 3, 4, 5]

In [42]:

sum(numbers)

Out[42]:

15

写在一行:

In [43]:

sum([int(field) for field in line.split()])

Out[43]:

15

文件操作 File IO

In [44]:

cd ~

d:\Users\lijin

写文件:

In [45]:

f = open('data.txt', 'w')
f.write('1 2 3 4\n')
f.write('2 3 4 5\n')
f.close()

读文件:

In [46]:

f = open('data.txt')
data = []
for line in f:
    data.append([int(field) for field in line.split()])
f.close()
data

Out[46]:

[[1, 2, 3, 4], [2, 3, 4, 5]]

In [47]:

for row in data:
    print row

[1, 2, 3, 4]
[2, 3, 4, 5]

删除文件:

In [48]:

import os
os.remove('data.txt')

函数 Function

Python用关键词def来定义函数。

In [49]:

def poly(x, a, b, c):
    y = a * x ** 2 + b * x + c
    return y

x = 1
poly(x, 1, 2, 3)

Out[49]:

6

用Numpy数组做参数x

In [50]:

x = array([1, 2, 3])
poly(x, 1, 2, 3)

Out[50]:

array([ 6, 11, 18])

可以在定义时指定参数的默认值:

In [51]:

from numpy import arange

def poly(x, a = 1, b = 2, c = 3):
    y = a*x**2 + b*x + c
    return y

x = arange(10)
x
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Out[51]:

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [52]:

poly(x)

Out[52]:

array([  3,   6,  11,  18,  27,  38,  51,  66,  83, 102])

In [53]:

poly(x, b = 1)

Out[53]:

array([ 3,  5,  9, 15, 23, 33, 45, 59, 75, 93])

模块 Module

Python中使用import关键词来导入模块。

In [54]:

import os

当前进程号:

In [55]:

os.getpid()

Out[55]:

4400

系统分隔符:

In [56]:

os.sep

Out[56]:

'\\'

- 类 Class

class来定义一个类。 Person(object)表示继承自object类; __init__函数用来初始化对象; self表示对象自身,类似于C Java里面this

In [57]:

class Person(object):
    def __init__(self, first, last, age):
        self.first = first
        self.last = last
        self.age = age
    def full_name(self):
        return self.first + ' ' + self.last

构建新对象:

In [58]:

person = Person('Mertle', 'Sedgewick', 52)

调用对象的属性:

In [59]:

person.first

Out[59]:

'Mertle'

调用对象的方法:

In [60]:

person.full_name()

Out[60]:

'Mertle Sedgewick'

修改对象的属性:

In [61]:

person.last = 'Smith'

添加新属性d是之前定义的字典

In [62]:

person.critters = d
person.critters

Out[62]:

{'cats': 4, 'dogs': 2, 'pigs': 7}

网络数据 Data from Web

In [63]:

url = 'http://ichart.finance.yahoo.com/table.csv?s=GE&d=10&e=5&f=2013&g=d&a=0&b=2&c=1962&ignore=.csv'

处理后就相当于一个可读文件:

In [64]:

import urllib2
ge_csv = urllib2.urlopen(url)
data = []
for line in ge_csv:
    data.append(line.split(','))
data[:4]

Out[64]:

[['Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'Adj Close\n'],
 ['2013-11-05', '26.32', '26.52', '26.26', '26.42', '24897500', '24.872115\n'],
 ['2013-11-04',
  '26.59',
  '26.59',
  '26.309999',
  '26.43',
  '28166100',
  '24.88153\n'],
 ['2013-11-01',
  '26.049999',
  '26.639999',
  '26.030001',
  '26.540001',
  '55634500',
  '24.985086\n']]

使用pandas处理数据:

In [65]:

ge_csv = urllib2.urlopen(url)
import pandas
ge = pandas.read_csv(ge_csv, index_col=0, parse_dates=True)
ge.plot(y='Adj Close')

Out[65]:

<matplotlib.axes._subplots.AxesSubplot at 0xc2e3198>

![]( AAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYVdW5+PHvC0PvdagCCqgoBjEaVNRBxaveBDUEFY1o 9KIx0SDGGCS/6BhjjBqNEvXGHvCqWKNy1asoDkGDEghFYBRBUKSXoUoZhvf3x9qbUzgzp/f38zzz 7HL23mftNWfeWWftVURVMcYYk/vqZTsBxhhjYmMB2xhj8oQFbGOMyRMWsI0xJk9YwDbGmDxhAdsY Y/JETAFbROqLyFwRmeJttxWRqSKyRETeFZHW6U2mMcaYWEvYY4DFgN9oexwwVVX7Au9728YYY9Io asAWkW7AucATgHi7hwETvfWJwPlpSZ0xxpgDYilh/xn4FbA/aF+pqq7z1tcBpalOmDHGmFB1BmwR +T6wXlXnEihdh1DXt936txtjTJqVRHn9JGCYiJwLNAZaisgzwDoR6aSqa0WkM7A+0skiYoHcGGMS oKoHFZLrLGGr6nhV7a6qvYCLgWmqehnwBnC5d9jlwGt1XKMgfm677baspyHbP5YHlgfFfv+ZyoPa xNsO27/SH4GhIrIEON3bNsYYk0bRqkQOUNXpwHRvfTNwZroSZYwx5mDW0zFGZWVl2U5C1lkeWB4U +/1DdvNA6qovSfriIprO6xtjTCESETTCQ8eYq0RSnRiTG+wfqjH5IysBGyxQ5AL7x2lMfrE6bGOM yRMWsI0xJk9YwDbGmDxhATtJV1xxBb/97W8BmDFjBkcccURKrmVMrtu9G376U6iqynZKiocF7FqU lZXRtm1b9u7dW+dxInLg4d0pp5zCZ599VuuxqsqECRPo378/zZs3p3v37lx44YUsXLjwoGsZk+sW LIBHH4W2bbOdkuJhATuCFStWMGvWLDp27Mgbb7wR9fhYW7yMGTOGCRMm8Je//IWqqiqWLFnC+eef z1tvvRX3tYzJNvuoZp4F7AgmTZrEmWeeyWWXXcbEiRNDXps7dy4DBw6kZcuWXHzxxezevfvAaxUV FXTv3j3iNb/44gseeeQRJk+eTFlZGQ0aNKBJkyZccskl3HzzzRHPefzxx+nTpw/t2rXjvPPOY82a NQdeGzt2LKWlpbRq1YpjjjmGRYsWAbBnzx5uuukmevToQadOnbj22mtD0mhMquzfH/0Yk1oWsCOY NGkSF110ERdeeCHvvPMO69e70WP37t3L+eefz+WXX05VVRUjRozglVdeiaka4/3336d79+5897vf jSkN06ZNY/z48bz00kusWbOGHj16cPHFFwPwzjvvMGPGDL744gu2bt3KSy+9RLt27QAYN24cS5cu Zf78+SxdupRVq1bxu9/9LsGcMKZ2FrAzLycDtkhqfhLx4YcfsmrVKoYNG0afPn3o168fzz33HAAf f/wx+/btY8yYMdSvX5/hw4dz/PHHx3TdTZs20alTpxju3SX82Wef5aqrrmLAgAE0bNiQu+66i5kz Z/L111/TsGFDtm/fTmVlJfv37+fwww+nU6dOqCqPP/44999/P61bt6Z58+bccsstTJ48ObHMMKYO FrAzLycDtmpqfhIxceJEzjrrLFq0aAHAiBEjDlSLrF69mq5du4Yc36NHj5iu265du5AqjWj8UrWv WbNmtGvXjlWrVjFkyBCuu+46fv7zn1NaWso111zD9u3b2bBhA99++y3HHXccbdq0oU2bNpxzzjls 3Lgx5vc1JlZWh515ORmws2XXrl28+OKLTJs2jc6dO9O5c2fuu+8+FixYwIIFC+jSpQurVq0KOeer r76K6dpnnHEG33zzDXPmzInp+C5durBixYoD2zt37mTTpk0H/mFcf/31zJ49m8WLF7NkyRLuvfde OnToQJMmTVi8eDFVVVVUVVWxZcsWtm3bFlsGGBMHK2FnngXsIK+99holJSVUVlYyf/585s+fT2Vl JYMHD2bSpEmceOKJlJSUMGHCBKqrq3n11Vf517/+FdO1+/Tpw89+9jNGjhzJ9OnT2bt3L7t372by 5MncfffdACGzTYwcOZKnn36a+fPns2fPHsaPH8+gQYM45JBDmD17Np988gnV1dU0bdqUxo0bU79+ fUSE0aNHc8MNN7BhwwYAVq1axbvvvpueDDNFLUqLV5MGUQO2iDQWkU9EZJ6ILBaRu7z95SLyjYjM 9X7OTn9y02vSpElceeWVdOvWjY4dO9KxY0dKS0u57rrreO6556hfvz6vvvoqf/vb32jXrh0vvvgi w4cPj/n6EyZMOFCV0aZNG3r37s3rr7/OsGHDgNB22GeccQZ33HEHw4cPp0uXLixfvvxAXfS2bdu4 +uqradu2LT179qR9+/b86le/AuDuu++md+/eDBo0iFatWjF06FCWLFmS4pwyBl5/PdspKD4xjYct Ik1V9VsRKQE+BG4CzgC2q+r9dZwXcTxsb6zXxFOdo6ZNm8bo0aNZtmxZtpMSk0L9PZjMCH6wbx+j 1KptPOyYqkRU9VtvtSFQH/A7o1q3vCALFy7k0EMPzXYyjDEFKqaALSL1RGQesA74QFUXeS9dLyLz ReRJEWmdtlTmgTFjxvDggw9y2223ZTspxmREs2bZTkHxiWuKMBFpBbwDjAMWAxu8l+4AOqvqVWHH F1WVSL6x34NJxm9+A3/4g1u3j1FqpWSKMFXdKiJvAt9V1Yqgiz8BTIl0Tnl5+YH1srIym8TTmALh dVUAYMMG6NAhe2nJdxUVFVRUVEQ9LmoJW0TaA/tUdYuINMGVsG8HFqnqWu+YscDxqnpJ2LlWws5h 9nswidiyBVasgLfecqVsn32UUieZh46dgWleHfYnwBRVfR+4R0QWiMh84DRgbEpTbIzJSTfeCMce CzU12U5J8YlaJaKqnwIDI+wflcwb27jPxuQnf/BH6+mYeXE9dIz74rVUiRhj8tdJJ8HMmW79mGPc RAZgVSKpVFuViAVsY0xcavtyrOrqt7dvh1qGhTcxSqrjjDHGxGL4cDjkkGynonBZwDbGpMyGDdGP MYmLqx22MaZ41dRYPXW2WQnbGBOTiy6Co4+u+xgL6OllJWxjTExeeSX6MX7A3rcPSiy6pJyVsI0x KffWW9lOQWGygG2MiUmTJrEfa1Uj6WEB2xiTctaROT0sYBtjEtY6bBR8P1BbwE4PC9jGmJjs2nXw vqFDQ7freRHFqkTSw7qmG2NiEqnU/I9/wKmnunXVwDEDB8KcOZlLW6GxrunGmJSrrTz2xReZTUc8 KivhhhuynYrEWMA2xiSsQYPI+3O5Dvvss+HBB7OdisRYlYgxJiaRgvD+/aH11v4xrVtDVVXm0haP kpLc72ZvVSLGmJQLDuLV1YH1+vUzn5ZY5fNMOXUGbBFpLCKfiMg8EVksInd5+9uKyFQRWSIi74pI 67quY4wpfMGBMB+6pb/7brZTEL86A7aq7gaGqOoA4BhgiIgMBsYBU1W1L/C+t22MKWL79gXWBwzI XjpitXhxtlMQv6hVIqr6rbfaEKgPVAHDgIne/onA+WlJnTEmJ/3mN27mdIB589zysMMCr19wQcaT FJObbgqsL1uWvXQkKmrAFpF63ozp64APVHURUKqq67xD1gGlaUyjMSaHlJTArbdCjx5u26+vXr8+ cEyuTtB7332B9X79speORMUya/p+YICItALeEZEhYa+riNT6vLW8vPzAellZGWVlZQkn1hiTfcGt QSDyQ7xcDdjBcmneyYqKCioqKqIeF1ezPhH5LbAL+C+gTFXXikhnXMn7iAjHW7M+YwpEr16uGqRe Pdi7N1Cy3rkTmjcPHHfkka5K5M47s5LMOgX/o3nzTTj33OylpS4JNesTkfZ+CxARaQIMBeYCbwCX e4ddDryW2uQaY3JNu3ZuuX9/aOBr1iz0uMpK+MMfMpeuRAU/JM0X0eqwOwPTvDrsT4Apqvo+8Edg qIgsAU73to0xBWrnztCxQXK5J2OsXnjBLRcsyG464mE9HY0xUb32WmjLj/A/60gBPBf/9MPTuWyZ a92Sa2m1no7GmIR99VW2U5C8ysqD9+Vbr0cL2MaYqPItsEUS6Z9OLnehj8QCtjEmqvbts52C5EXq Lj93bubTkQwL2MaYqIJ7MearSKXphx92y1yrw66NBWxjTFRTpsR+7LRp0L9/+tKSqEaNAut+8P7g A7fMlyofC9jGmKjuvjv2Y1u2zK3R+l55xbW5Xr48sC88QK9bR16wgG2MSakGDXKnU8qUKfCjH8Hb b8OPf1z7cRs3Zi5NybCAbYxJWuPGge7pJSWhkxlk07Bhbun30gzXsKFbduqUmfQkywK2MSZpu3YF Ru9r0CB3Anbv3m4ZPPekCNxyi1vfu9ct7aGjMaaoBI/Qt2xZbgRBv4S9e3dg3/79cPTRocflQlpj YQHbGJMSftDzu38HB8ls8UvYu3a55ejRbjliROhxFrCNMUXFD3p+k7l773XLd96BU0/NTpr81iDT p7vlI4+4ZXAVCeRPwM6hxjfGmFx13XXQrRuMq2P21s8/d0u/Sd9tt7nAuHkzzJiR/jRG4rdW8Yd7 zaXmhonI8+QbYzJBBJo0ie3Y4KA4fnx60hOLaEPAHnUULFrk1vOlhG1VIsaYqGpq3EwzsciXJnKb NwfW8yVgWwnbGBPV1Klu6q/y8uiBOxOTG8yf70r8ffsmfo01awLrBROwRaQ7MAnoCCjwmKpOEJFy 3NyOG7xDb1HV/0tXQo0x2fPFF27cjVdeyV4a7r0X/v53+Oc/YcAAty9VgbZgAjZQDYxV1Xki0hyY IyJTccH7flW9P60pNMbkhGxPCzZ+fOQu7889B5demlzQzZeAHbVWSlXXquo8b30HUAl09V4ugJnd jDF1CW+uF4tf/Sr16fCD9Y4dofsvvdQtaxvb2h/0ad680P3BIwoec0zy6cuEuB46ikhP4FjgY2/X 9SIyX0Se9GdXN8YUlnffdctYHzoCdO6cnrQAtGgRuv2737nlwIHw1FOuc0xwiblnT7cM/4YQvL19 e8qTmbClS2t/LeaHjl51yMvAGFXdISL/DXhZxR3AfcBV4eeVl5cfWC8rK6OsrCzWtzTGZJkqjBrl 1oMf0kWTqam3/vY36NAhsH2VF4EefNAt/TRXVsLhh4eee8stMHJk2pMYk4qKCioqKqipgd//vvbj Ypo1XUQaAP8LvK2qD0R4vScwRVX7h+23WdONyWMPPgg33ODWO3ase9zo9u1h0yYX5B96CK6/PvT1 ZENBpDr073wHxo6FK65wJW+/pPzyy25Y1WjvGXzNXAhVGza4fIYEZ00XEQGeBBYHB2sRCf7ScwHw afLJNcbkksWLA+vnnFP3scEBL1MPKL/6KhCkg6s1fvSj2M7PtZ6PTz1V9+uxJPdk4MfAAhHxq/XH AyNFZACutchy4JrEk2mMyUWPPRZYb9y47mODA3aqS6vh11uzxtWTb9lycEk+HiUluTPZAsChh9b9 etSAraofErkk/nZiSTLG5DpV+POfQ/dF65oeHFT37Dn49X37Ei/R+uNrjx7tpitr0yb6OX/8Y/Rj 2rSJr24+3bp0gZNOcm3NI7Gu6caYg9TUwC9/GbpvyJC6zwkeDzuSoPYHcauuhqZNXYk/lmANbm7J aGbNgieecOOK5IJoQwBYwDbGHCTSLOL+ZAC1eeEFeOml2l+fODHx9Kxde3DVxZgxdZ9TVRX9ut26 wcknx3ZsJtTU1N3CxgK2MeYgH33klqefHvs5Z58deNgXqQ7bn44rEb17H3z+L34RWH/55cD6zTe7 ZbQHeL4GDWD16tyoGrGAbYyJm998b8GCxM6PFLCvvTbx9EQS/IDOrzMfNw6OOMKtDxwY23X8bxPZ 7jzz0UdQUVH3Q9Aca9RijMkFK1e65caNbnnyyfGd7wfs4cMDA0b5gTSWc998E77/fbcdy1Rj/ow2 P/0pLFzo1mOtM/cfaFZVuffO1pgpgwdHP8ZK2MaYg/z616Hbd96Z2HX8Ou2Sktib+n39NfzgB4Ht rVtrP3blSjjhBFcXDdCwIZx7Lnz5JfTrF9v7+ccNGgSPPx7bOdliAdsYE1WizfES6Un45ptuuX+/ q4eua0KEbt3gk0/c+tKlrm22CPTqFV8a/eqVr76K/bxssIBtjIkqfNLaaCIF51gD9s6dbnnnnW4u SV+0EvNhh8V2/Ui+/dYts9WJJrwJZW0sYBtjoop3MKfg4Nyxo5twIFo7bZ8feG+9NbSE7s+/mA5r 17rlPfek7z3q8vrrsR1nAdsYE1W8Xc2Dj1+3zj1wjPUawVUg/gPBQrV3r+u8s2xZYN81dQzyYQHb GBNVpI408ahXL/aAHVwt4QfsWFuY5Jvycvje90L3PfRQ7cdbwDbGHOSKK0K3463bDQ/OkybBo4/G dq4/HvSIEYF9sXQzT8Yhh6T3+rW5666D99X1gNcCtjEmxIMPuokBgsXaCcUXqTQ9c2Zs506d6pbB vRd79Ijv/eP19dfpvX6qWMA2xoTwJyzw65JXrIg+Ul+sVq+uPXDfdltoczw/6B91VHLjkOSTaA9m LWAbYyLyW060ahX/ubXVV3ft6oYPjaSiwv1z+M1voLQ0sH/cuNT9w8gVL7xwcHCOpZelBWxjTER+ 8Ihn8l1fIhMY/OMfbrlyZaDnItQe4NPh6KMz8z4XX+xah5x/fnznxTJFWHcR+UBEFonIQhH5hbe/ rYhMFZElIvKuzZpuTGHxJ7dt1Cj+c+MJ2Hv3wjHHuMH7wT2gnDMn8Hq0WVhSyR+HJJ38vLnnHnjt tfjOjeV/ZzUwVlWPAgYBPxeRI4FxwFRV7Qu8720bYwrET37ixuRIJGDHY8sW+PRTV79dDPwOQLF2 JAoWNWCr6lpVneet7wAqga7AMMB/FDARiLNwb4zJZfv3xzcmR7B4StjhnWMGDIC//z2x980H06a5 5bnnumWLFrGfG1ftlIj0BI4FPgFKVdWf9H4dUFrLacaYPDR6dOLnxhOww4dP3bYNmjd369OnJ56G eJxwQnyBMxl+O+sWLVyX//bt4zg31gNFpDnwCjBGVbdL0ONMVVURifgrKg8alLasrIyysrLYU2eM yajgQNunT2bec9eu0O2NGwMtU/xxrtNt5kz48EM47TT3DyOdHXU6d3bLSy5xSzewVgXl5RVRz40p YItIA1ywfkZV/WrydSLSSVXXikhnYH2kc8uTmXnTGJMRU6ZAWVnqms+Fl7DPPBPeey/yseEBe9u2 9HeUCVevnhtLG9zwriNHpu+9wr9RXHEF/PvfZZSXlx3Yd/vtt0c8N5ZWIgI8CSxW1QeCXnoDuNxb vxyI83mnMSZXDBvmZg/fv98Fr3hbL0Tjj3EdyQknHLyvQ4fEmgYmw2++mO6pwsLr7G+5pe7Ji4PF UsI+GfgxsEBE5vrvAfwReFFErgJWABfG9pbGmFzUoAE8/LAL2uedl9pr+6XXcLW1lMjWNF2Q/jGx k5mMOGrAVtUPqb0kfmbib22MySXNmsGVV6bmWqNGxdZsLZnglWqZ+ieRzMNc6+lojAFcwE6Vww6D O+6IflwsE+xmih+wmzZN33t8/HFy51vANqbI+XWq6e4gE8yfkisXA3ayY3/X5cQTQ7cvjLMi2QK2 MUXOf8gW77gWyfCrQsKrYN56Cy66KHPpCOYH7ER6IALs2OFauMTjhRfiO94CtjFFLt2tInzBE836 D/befjv0mHPOgcmTM5OecMmWsLt3j31mnDvvTOw9Epy83hhTKFasyMz7BLcUycW5GpMN2Fu2uJ9I VqwIbaZ4/vkwe3b872EB25giplp7k7tUO/PMwJRY4U3nJkxIb91xLPyu6W3aJHed6mq/92JA+Jgs /frBq6/Gf20L2MYUsUTGuk5U8DCpl10GY8cGtq+/PnPpqM1hh7lZdpKd8Ldhw/R1+rE6bGNMiNq6 kCcr+GHe9OmZfcgZq65dE3/oWJfSFA2NZwHbGHNASUn6Blzq2TN0u1279LxPMkRSE7DDS9ibNwfW 160jYRawjTEH7NsXGP4z1cKrXzZtSs/7JKNevdRUZwTPmKMa+pDVn8knERawjTEhsjmOR7bVq5d4 CTt4suJnnw29ZrBk8tcCtjEmq047LdspCPj4Y1i8OPnrPPBAegaRsoBtjIlr1pNUatAAbrghO+9d m0Q7tYSXnO+/P/m0hLOAbUyRa948c1NxhauudtNk5ZJYSsYiMGNG3ccsW+aWAwfCD3/oJohIlrXD NqbIffNNaP1rpmWyLXgsVq6M7bhTTw08oKyudr0cZ80KTMiwbZurD//3v+GZZ6BtW+jdO7m05VhW GWMyZepUt0zncKLhOnU6eF9ds9Hki3nz3LJfv8C+rVthzx63LuLufceO5N4nlinCnhKRdSLyadC+ chH5RkTmej9nJ5cMY0ymnXWWW4Z3o06nNWsO3vf555l7/1SI1IrEb6IY3CRy2LBAc75UtTmPpYT9 NBAekBW4X1WP9X7+LzXJMcYUOn/MDl+62n2ni/9P5+qrA/s+9YqzDRsG6rYbNHABu00b6NgxNe8d NWCr6gygKsJLRdxa0xiTqPDWFMFjiuSDU05xy8ceC+z73/+F/v3dvQ0e7KYB27fP9WpM5TeYZOqw rxeR+SLypIi0TlmKjDFp9/3vu2VwB49rrslOWs7OswrVyy47eF+vXqETLzRo4OqrjzoqNwL2fwO9 gAHAGuC+lKXIGJMWqoEma/6DvuCv6pka3jTfe1J27XrwvokT4Z57AtslJYG8TmWzxYRqj1R1vb8u Ik8AU2o7try8/MB6WVkZZalojGiMidvzz8Oll4aOlTFkSGA9HaPURZIPAXvbNmjZMvJru3aFbldW uuWoUYF9JSWBadC+/jr6+1VUVFBRURH1uIQCtoh0VlX/ee8FwKe1HRscsI0x2eO3xliwILAvuPQ3 eDBMqbXolTp+wH74Yfj5z9P/fvFo1Mg1xRs9uvb5FsMDtt+Ub/jwwL6SErj11tjfN7wwe/vtt0c8 LpZmfc8D/wQOF5GVInIlcLeILBCR+cBpQJ49NjCm+Lz7rlt+5zuRX//JT2D9+sivpZLfKmT0aJg7 N/3vF49mzdyytqm+IDDje7jguup0fYuIWsJW1ZERdj+VhrQYY9KoVy83uJHvwguzk46ZM2H3bhfg BgzIThpq4/e6DK/PX7fONdlr0wZ27gzs9zvGQOhUa3ffnZ705VkLSGNMohYtCt2u7St/uh12WHbe NxZ+yXjatND9RxzhSt3167tg3q6d6yxzwQWBYzLRAcm6phtTJILrrk1kxxzjluGTGPhVJH7J2+/Z +PbbgWMyMZmxBWxjisTgwdlOQe77618TP9dK2MaYlPnww2ynIPc1apT4uW3apC4dtbGAbYwxnliH ep01K3R7y5bMTAJhAdsYYzyxBuyBA0O3w8cTDw/oqWIB25gikYmHYvkulm7kzZqFHhc++iDA8ce7 7v8jR8I776QufaKpmNO9touLaDqvb4yJTU2NeygW/Odof5oH27gROnRw68H5U1oa6FT02mtw3nmB JoAtWriu7KkkIqjqQd1vrB22MUXgoYdcAPrgAzddlZW2I2vSJPL+ww93AfuRR9zEBMG2b09/unwW sI0pAitWuOVxx6VmMthC5XdND7ZzJyxf7tabNs3u4FVWh21MEejf3y2TabZWjKqr4Wc/cxMVw8Gz 49SvH9ss66liAduYIrB7t5vSyqpC4tOwYeDbCcCXX4a+Xr9+ase7jsYeOhpTBPyv8fbnGF1wXom4 cUQ++wzuuAN++ctAPffrr0PjxvAf/5GONNhDR2OK1ogRmemJV0j8CR1Wr3bL4cNDH0qed17m02QB 25gi0KlTbo+Sl4v8GWP8JnuZmpGnLlaHbUwR2LPHHjjGa+3a0O1MzXlZl1hmnHlKRNaJyKdB+9qK yFQRWSIi79qs6cbkJlU3zsVjj9ngT/EKnpwAXOeZbIulhP00ED4R/Thgqqr2Bd73to0xOebWWwN1 17nwlT6f3HtvYP322/MkYKvqDKAqbPcwYKK3PhE4P8XpMsYk6YUX4Pe/D2z/+tfZS0s+8h82Qu40 h0y0DrtUVdd56+uAHPjfY4wJdvHFodtWhx2fqqBiamVl9tIRLOmHjl5Da2vdaYwpKMETFr/1VvbS ESzRZn3rRKSTqq4Vkc7A+toOLC8vP7BeVlZGmQ1kYExW1DawkQm1cCEcfXTovnRP/1VRUUFFRUXU 42Lq6SgiPYEpqtrf274H2KSqd4vIOKC1qh704NF6OhqTPX6PvTffdKP03XNPdgcuyifh+dStG6xc mcn3j9zTMWrAFpHngdOA9rj66luB14EXgUOAFcCFqrolwrkWsI3Jgu3boWVLt15TE/tMKsYJD9jD hrmu6Jl7/wS7pqvqyFpeOjPpVBlj0uKuu9xy6VIL1qkwLkcaLtuv0pgCNNFrdGvd0VMjV9qw21gi xhSgM86Azz/PdioKR9Om2U6BYwHbmAKyb1+gRYO1u06NlSvdQ8dcYFUixhSQQYMC6+PHZy8d+c5v jSySO8EaLGAbU1DmzAmsDxyYvXTku0MOcctca+RmAduYApWOmVCKhV+tlGv9/CxgG1MAPvzw4LbD 6e6dV8j8vLvoouymI5wFbGMKwCmnBNYrKkIHLjLx82dH/+EPs5uOcBawjSkwffpAa5tSJCl+CTtX hlX1WcA2Js/t2xdYv/lm6Nw5e2kpFH7Arl8/u+kIZ+2wjclzP/mJW1ZWwhFHZDcthcIP2CU5FiGt hG1Mnvuf/3FLqwZJnVwtYVvANqYADB4MnTplOxWFwwK2MSblduxwyyuvzG46Co1fFZJrIx3mWHKM MfFo0cItTzopu+koNH6gzrUJHyxgG5OnliwJrB9+ePbSUYhyLVD7LGAbk4e2bIEnnnDr/tjXJnWC m0rmkqQarYjICmAbUANUq+oJqUiUMaZ2c+eGDuw0alT20lKocm3QJ1+yrQwVKFPVzalIjDEmuuBg nWutGAqF/2wg16SiSiRHa3uMKTzduwfWr7oqd7+657ujjoKvvsp2Kg4Wddb0Ok8W+RLYiqsSeVRV Hw973Wbqwqk8AAAPwUlEQVRNNyZOgwa55noLF4buX7s20O184UIXVExhSnjW9ChOVtU1ItIBmCoi n6nqjOADyv2pG4CysjLKcm2AWWNyyMyZ8Mknbn3qVBg6FP75T1f14c8ms3gxHHlk9tJoUq+iooKK ioqoxyVVwg65kMhtwA5VvS9on5WwjYnBtm3QsiX89Kfw6KN1H2t/UoWvthJ2wnXYItJURFp4682A s4BPE0+iMcVp3jxo1cq1/X30URgxovZj/Z6NpjglXMIWkV7A373NEuBZVb0r7BgrYRtTh0gdNDZs cOMwt2rltvv1c51k9u2z0nWxqK2EnbIqkVre1AK2MbX45ptAq4+vvnITv+7aBU2aBI6ZMweOO86t 19RYM75iYQHbmBwSXLJessTNEmOML+V12MaYxFRWBtbbt7dgbWKXY/MpGFNY6hpEaN06aNs2c2kx +c9K2MakyIIFLkCLuDbUm+sYsOHJJ6Fjx9ybgsrkNqvDNiYB114Lf/1roNXGpk2ueiOSuXPhgw/g uutg+nTo29c9YDSmNvbQ0Zgk7d/vBra/8Ub4858D+/xSNbhJcG+8Ea6+OnCe/QmYeKWra7oxRaGy 0rWH9vXqBcuXw5tvwve/7/YdcwzMn+/WBw92x/ftm/m0msJlddimaPzlL64kvHhx7OcsWQKTJ7sA HOyzz9zyBz8IDHc6d27g9SOPdCXrzz9PLs3GBLMqEVM0unaF1avdeiwfyyeegNGjA9tTpri5E/2W HR06wMaNgdfto25SxeqwTVHasgXatDl4f7SPZU1NoAXHSSe5EfO2bAl0Fwf48ks47DC3vmFD7Q8d jYmXdZwxRSk8WH/8sVtedJGrl1Z1Dw5V4dNPoXFjV23iB+uNG+Gjj9zrwcEa4NBD3X5VC9YmM6yE bQpW27ZQVQVvveXG7DjqKDcyXvAUW3WZNQuOPz69aTQmEithm4Kl6kq7fvM6ETfaXVUV/OhHcM45 cPTRbn9drTaGDnWDMPmlZgvWJtdYCdvkjf373bJePaiudkF1+XLX9jmSQw+FZcvqvmZNjQvk9azo YnKIlbBNztq1yy2rq10TuvXrYetWt/9Pf4Ju3WDUKDe0aP36gRJ0o0aBYP3EE4GSsaoLxNGCNbjr WbA2+cJK2Cbj5s6FsjI3LVY8Dj8cxoyBBx90baoXLnTtoR9+2MbkMIUlLSVsETlbRD4TkS9E5NfJ XCvXxTJBZqFLNg82b3YTyQ4c6IJ1mzbwyCOu8wnAhAmwZw+8/TY89xy89x68/HKg1PzZZ24Mj88+ c/XNY8e6KbUyGayL/XNQ7PcP2c2DhD/qIlIfeAg4E1gF/EtE3lDVyrrPzE8VFRVxzfiuGqhnXbPG BZU9e1zTsMpKN6tI165QWuqOW7sWvv3W7WvZMvF0+pO5hqdl82bXZK1p09AhP7dsca83auTS5L+m Cjt3utcbN3bVBg89VEHfvmWowowZrupi82ZXYp41yx2nCkOGuGts2OAe4i1c6O5761bX/O3NN+Hc cwNpuPba0PSefXbi959u8X4OCk2x3z9kNw+SKZucACxV1RUAIjIZOA8ICdgbNwbar1ZXuz/ib791 89MF/9TUuNf37nXHNm/u1vfscUFo2zbYvj0wCenGjS5gNGkCzZq5c6ur3fgNzZu747t1c8fv3+/q M1euhNat3bCWTZq4INSqlQum27a5OtOGDQPbpaWBOs6lS2HaNBeQGjd20zt984275qJFLjCtWeMC 36ZNgftv3Nilp7rabW/dCv37u+usXh15CM4OHVw+nXaay4Pvfc+1bnjmGXdOhw6we7frYn3CCYG2 xc2bu/tt1syle/dut+4/WPPzs1kzd6yq+0fRooVLn/87aNTILRs3dvmzcaP7HTVt6vK0Xj0XVEVc 07njj3eDHZWWujyYPdstTz/dlaJ79oR27aBzZxew6xoj2hhTu2QCdldgZdD2N8D3wg/q29c1r2rQ wP2hd+jgAkaDBi4wlpS44OIvGzVygWTHDhc8mzRxAaVlS/fjlxB79HCBYs+eQBBXdYPv7NoFnTq5 +fBE3Pu1aQP/+Z8uyG/Z4n6qq10g9oNRixbuevv2ufXZs12w37cPZs6Er792Qa+62g3+062bC0Ld usFZZ7n33LHD/UPYu9cFu717Q+foUw0NWNu2BZqi+cetXg3/+IdLy003ueXy5e6ezznHBfxdu1x6 Bg9271td7dLSooX7p+AH3N273XuWlrpr19S4kvP27e6YQw4JPHTbscP9HqqrXVr8qgY/zeXl7ica v4rDGJNaycyaPhw4W1VHe9s/Br6nqtcHHWNPHI0xJgGpHl51FdA9aLs7rpRd5xsaY4xJTDKtRGYD fUSkp4g0BC4C3khNsowxxoRLuIStqvtE5DrgHaA+8GShthAxxphckNaOM8YYY1LHOuVGICJFny/F ngfFfP9eFWdRy9U8KNoPZTgROVpEhgCo6v5spycbij0P7P7lRBF5CfiTiPTzOscVlVzPg6KvEvFK Ug8DQ3Dtyj8GXlfV2VIkg6EUex4U+/0DiEhH4G1c7+VDgC7AbFV9PKsJy6B8yIOiLmGLiACtgObA kcClwCbgJhFpUQx/qJ42FHceFPv9AwwAlqjq08CfgFeB80SkmOZ970+O50FRBmwRGS4iD3h/jO2B k4Cmqroe90vaDPw8m2lMNxEZGPRBbEWR5YGI9BKRxt5mW4rv/i8Rkd+JyHnerrnAd0Wkt6ruxDXb nQP8NGuJTDMRKRORQUG75uPy4LBczYOiCtgicpSIPAf8P+AXItJFVb8A/gmM9Q5bA7wCDBCRLllK atqIyKEi8iauCuAZETlLVb+kSPLAC9RvA08Cz4pIP+8zMB240TuskO9fRORa4FfACuBeEfkvYDvw DPAL79Aq4D2gqYh0zkZa00VEWojIq8DfgWtEpC2Aqm4EXiSH86DgA7ZX7YGInAo8BnysqscCDxIY ++Qp4CQROVRVq4H1wB6gSYRL5rvxwDxVPRF4HfiJt/8p4OQiyINfArNU9XTgA+B2EekH/A04sdDv 3/tWOQi4W1WfAn4GlAFnAP8L9BaRod5D1024MYO2Zim56bIX97u/FFgNjIADseIl4AgROTMX86Dg AzaBP7jFwFmqOsFrstMH8FsCzAX+DdwDoKqf4h467M1wWtNCRJp4ywbADmCf91JLoFJEegMfAbNw dXcFlQdB9+93FFsEoKoP4UadHIkrVc8C7vVeK6T7HyUip/klSdyIml1FpERV38Plx4m44PQ88Gfv M3E6IEBONnGLh5cHZSLSRlX3AI/jSs9LgONE5Ajvn9mnuDx4IBfzoGADtogMFZH3cF/5LlbVjaq6 U0SaqOpeYAHuPyyqugW4A/ch/ouILAK+ArZk7QZSICwPLvJKjm8Ah4jIXOAcXG/X54DTgLuAUhF5 qBDyIOz+L1TVfbivuceKyHdE5DvAQqAX7m/hTgrkM+BVfXQRkQrgCtxn/SERaYUb86cD0Ns7fDJw NNBOVZ8BngXGARcDN3t/H3knQh5cAjwsIh1UdbcXB2YCG/BK2apao6p/AyYBt5BreaCqBfeD+yB+ ghufeyDwP8B477WG3rIM98HsQKB5YwfgZGBYtu8hDXnwPPBr77UjgTeCjr0VeMhbLy2EPIhw/5Nx X/9bAL/Fff3/CDjey5uxhXL/QIm3PBx41t8HPIILRA1xdfijgFbe6xOBO4Ou0Sjb95GmPHgIeDXs 2Au8vOmNay1UP1fzoGBmwvPa0qKu3mkQMEdVX/dem4b7mvekqq7zTmmAax1R5V9DVTfg/tvmpSh5 8B5wv4g8DTQGNorIkerGf/kAuEFE6nn5sy7yO+S2KPc/FbgPeFlV7/BaAizzXvsI2O1dZn3QZySv iOvk8XugnvdgtQVe9Ze6sX+ux1X99MP9k7oA6Ab8AajBlTbxjt+T2dSnRgx5MAZYLSKnqep0b//f ReRI3LhIzXGFucpczIOCqBIRkStxw73+3tu1ABgpIr287QbAUrz6SQBVnYorXZ2s3r/TfBZDHpQA XwK/Az4HFNdS5hfAX3H1eXmbDzHe/zLgz972cu+8a4Arcc8wyNfPgoichmuC1hr3Wb8DqAaGiMgJ 4L7uA7fjHji+BzyKe9D8Ca4tekUWkp4yceRBOS4f/PMuBH6DK7j011wexC7bRfwUfPVpjmvtcAPu 4eER3v4HcF+DP8JVffQH3gI6ea83BK4GemX7HjKcB297x/fGtS99EhiU7XvI8GegFPcgaSzwL+CE bN9DCvLgVOCyoO3/Bq7FtQKa4+2rD3QCXvY/97hA3TXb6c9CHrwUlAenAqdmO/0x3WO2E5CiX9Qh 3vKPwAtBv5h2wCn+MbimW42znd4s58EkvHr8QvqJ8zPQyNtulu10p/D+m+Cquvz610uBu7z1ecAv vPXvAs9nO72WB4n9FESViKp+7a0+ABwqIv+h7qvPFlWd4b12DbAL9xWp4MSRBztx9ZUFJc7PQI13 zs7MpzQ9VHWXupYP/u92KLDRW78SONLrMPU8XvVPoSmGPCi4wZ+8OslLVfVUb/sEXM/GEuAqVV2T zfRlQrHnQTHfv9fWXHGtYK5X1aVee+JNwFHAClX9pq5r5LtCzoOCCtgibmQ1EXkF14NpL+5h2heq ujS7qcuMYs+DYr9/AHFjpDyO63p9Fa6Ueb2qbstqwjKoUPOgYJr1gXvCLyJNgY64jiB3qOrbWU5W RhV7HhT7/XuOxdXf9gKeVtUns5yebCjIPCiogO25Flc/dabmYDvKDCn2PCj2+1+JqwL6k7refMWo IPOgoKpEwHWe0CKcLSRYsedBsd+/KVwFF7CNMaZQFUSzPmOMKQYWsI0xJk9YwDbGmDxhAdsYY/KE BWxTMESkRkTmishCEZknIjd60z7VdU4PERmZqTQakwwL2KaQfKuqx6rq0bhxJM4BbotyTi/cTCTG 5DwL2KYgqZuM4mrgOgAR6Ski/xCROd7Pid6hfwRO8UrmY0SknojcKyKzRGS+iFydrXswJpy1wzYF Q0S2q2qLsH1VQF/c5MP7VXWPiPQBnlPV471B729S1R94x18NdFDVO0WkEfAhMEJVV2T0ZoyJoBC7 phsTSUPcJLTfwQ2v2sfbH17HfRbQX0R+5G23xE32sCITiTSmLhawTcESkUOBGlXdICLlwBpVvcyb 9293Hadep24KOWNyitVhm4IkIh1wc1X+xdvVEljrrY/CzUYDsB03UavvHeBn3pjKiEhfb/Q/Y7LO StimkDQRkbm4SZf34aZD8yfdfQR4RURGAf+Hq9MGmA/UiMg84GlgAtAT+LfXJHA9bnZxY7LOHjoa Y0yesCoRY4zJExawjTEmT1jANsaYPGEB2xhj8oQFbGOMyRMWsI0xJk9YwDbGmDxhAdsYY/LE/we1 G8sUQyi3yAAAAABJRU5ErkJggg== )