Files
ailearning/docs/da/029.md
2020-10-19 21:08:55 +08:00

22 KiB
Raw Blame History

Numpy 简介

导入numpy

NumpyPython的一个很重要的第三方库,很多其他科学计算的第三方库都是以Numpy为基础建立的。

Numpy的一个重要特性是它的数组计算。

在使用Numpy之前,我们需要导入numpy包:

In [1]:

from numpy import *

使用前一定要先导入 Numpy 包,导入的方法有以下几种:

import numpy
    import numpy as np
    from numpy import *
    from numpy import array, sin

事实上,在ipython中可以使用magic命令来快速导入Numpy的内容。

In [2]:

%pylab

Using matplotlib backend: Qt4Agg
Populating the interactive namespace from numpy and matplotlib

数组上的数学操作

假如我们想将列表中的每个元素增加1,但列表不支持这样的操作(报错):

In [3]:

a = [1, 2, 3, 4]
a + 1

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-3-068856d2a224> in <module>()
 1 a = [1, 2, 3, 4]
----> 2  a + 1

TypeError: can only concatenate list (not "int") to list

转成 array

In [4]:

a = array(a)
a

Out[4]:

array([1, 2, 3, 4])

array 数组支持每个元素加 1 这样的操作:

In [5]:

a + 1

Out[5]:

array([2, 3, 4, 5])

与另一个 array 相加,得到对应元素相加的结果:

In [6]:

b = array([2, 3, 4, 5])
a + b

Out[6]:

array([3, 5, 7, 9])

对应元素相乘:

In [7]:

a * b

Out[7]:

array([ 2,  6, 12, 20])

对应元素乘方:

In [8]:

a ** b

Out[8]:

array([   1,    8,   81, 1024])

提取数组中的元素

提取第一个元素:

In [9]:

a[0]

Out[9]:

1

提取前两个元素:

In [10]:

a[:2]

Out[10]:

array([1, 2])

最后两个元素:

In [11]:

a[-2:]

Out[11]:

array([3, 4])

将它们相加:

In [12]:

a[:2] + a[-2:]

Out[12]:

array([4, 6])

修改数组形状

查看 array 的形状:

In [13]:

a.shape

Out[13]:

(4L,)

修改 array 的形状:

In [14]:

a.shape = 2,2
a

Out[14]:

array([[1, 2],
       [3, 4]])

多维数组

a 现在变成了一个二维的数组,可以进行加法:

In [15]:

a + a

Out[15]:

array([[2, 4],
       [6, 8]])

乘法仍然是对应元素的乘积,并不是按照矩阵乘法来计算:

In [16]:

a * a

Out[16]:

array([[ 1,  4],
       [ 9, 16]])

画图

linspace 用来生成一组等间隔的数据:

In [17]:

a = linspace(0, 2*pi, 21)
%precision 3
a

Out[17]:

array([ 0\.   ,  0.314,  0.628,  0.942,  1.257,  1.571,  1.885,  2.199,
        2.513,  2.827,  3.142,  3.456,  3.77 ,  4.084,  4.398,  4.712,
        5.027,  5.341,  5.655,  5.969,  6.283])

三角函数:

In [18]:

b = sin(a)
b

Out[18]:

array([  0.000e+00,   3.090e-01,   5.878e-01,   8.090e-01,   9.511e-01,
         1.000e+00,   9.511e-01,   8.090e-01,   5.878e-01,   3.090e-01,
         1.225e-16,  -3.090e-01,  -5.878e-01,  -8.090e-01,  -9.511e-01,
        -1.000e+00,  -9.511e-01,  -8.090e-01,  -5.878e-01,  -3.090e-01,
        -2.449e-16])

画出图像:

In [19]:

%matplotlib inline
plot(a, b)

Out[19]:

[<matplotlib.lines.Line2D at 0xa128ba8>]

![]( AAALEgAACxIB0t1+/AAAIABJREFUeJzt3XnczXX+//HHy9KIqVS/byRaqUmaSUomgyuUJWkxQ4u0 j1JSJq2m1FTybVrQEFMm2rRQpJpQLmMphcpeWSr6xZQJQynL+/vH+5iMrutyznWW9+dzzvN+u123 azvXOU9cXud13p/3Ys45REQkf1UIHUBERLJLhV5EJM+p0IuI5DkVehGRPKdCLyKS51ToRUTyXNqF 3sxGmNkaM5tfxm0GmdknZvahmTVM9zFFRCR5mejo/wa0Le2bZtYeqOucqwf8HhiagccUEZEkpV3o nXPTgG/KuElHYGTitrOA6mZWI93HFRGR5ORijP4gYOVOn68CaufgcUVEhNxdjLVdPte+CyIiOVIp B4/xBVBnp89rJ772X8xMxV9EpBycc7s20/8lFx39eKAbgJk1AdY559aUdEPnXGzf7rjjjozcz9at jkmTHN26OapXd7Rr53jmGcemTT+97cqVjgEDHA0aOA45xHHbbY4lS8Jlj/vfvfIrfxzfkpGJ6ZXP AjOBo8xspZldambdzax7oni/Biw3s6XAMKBHuo+Zj+bPhxtvhEMOgZtugoYNYckSeO01OO88qFr1 pz9Tu7b/mXnz4OWX4bvvoKgIGjeGwYPhq69y/scQkQhKe+jGOXdeEre5Jt3HyUdffgnPPgtPPglf fw1du8LEiVC/fmr3YwbHHeffBgyAyZP9ff7xj9CsGVx4IXTsCFWqZOfPISLRppWxGVJUVJT0bSdN grZtfUGfPx8efBA++wz690+9yO+qUiV/308/DStXwm9/C8OHQ61acMUV/nHSyR5Fyh+W8kefJTvG k21m5qKSJZvGjYPu3X1xP+uskodksmHVKhg61L+CmDYNDjooN48rItllZrjdXIxVoc+hyZPh/PP9 uPsJJ4TJcP/9MGIETJ0KBxwQJoOIZE4yhT4X0ysFmDHDX1QdOzZckQfo0wc2bIA2bWDKFKhePVwW EckNdfQ5MHeuHzd/8klfYENzDq6/Ht5911/8/fnPQycSkfLS0E0ELFoErVrBkCFw9tmh0/zIOX9x dsUKePVVzcgRiSsV+sCWL4cWLfxsmq5dQ6f5qW3b4IIL4NtvYcwYqFw5dCIRSVUyhV7TK7Nk1Spo 3RpuvTWaRR6gYkU/nOQcdOvmC7+I5B8V+iz45z/h1FPhqqv8W5RVrgwvvOAzX3mlL/oikl9U6DNs 3Tp/wfV3v/MzXOKgShU/v3/BAujdW8VeJN9ojD6DNm70nfxJJ8FDD/mtCeLkm2+gZUu/XcKdd4ZO IyLJ0Dz6HNq8Gc48E445Jp5FHmDffeGNN6B5c9hrL7jhhtCJRCQTVOgzYMsW6NzZrzQdNiyeRX6H Aw7wK3ibNfPFvnv30IlEJF0q9Gnats3vDgkwapSfyRJ3tWv7Yt+iBVSrFt1ZQyKSHBX6NDjnO96v vvKLjvJpHvoRR/hVs61a+WIfpcVeIpIaFfpycs7PUFm0yBfEfFxZWr++fwJr29YX+9NOC51IRMpD 0yvL6d57objY70SZz3vFHH88vPSSX0H77ruh04hIeWh6ZTksWACnnOKP8DvwwNBpcmP0aLjnHr9B Wz4NUYnEnbZAyALnoEcPuOuuwinyAF26+D/v4MGhk4hIqtTRp2jUKF/s3nknP2bYpOLjj+Hkk+GD D/zMHBEJT7tXZtg33/gLlK+8EvbwkJBuvx2WLIHnnw+dRERAhT7jevTw74cMCZsjpO++86t/H31U s3BEokCFPoPee8/vAbNokd8qoJBNmOBPqJo/Pz+nlYrEiS7GZsi2bb6bHzBARR6gQwdo0MAfNC4i 0aeOPglDh8Kzz8LUqfHexyaTPvsMGjWCWbP8KloRCUNDNxmwZo3vXqdM8e/lR/fdB9Om+aEcPQGK hKGhmwy48Ua4+GIV+ZL07u3PxX355dBJRKQs6ujLMHWq37lx8eL83uYgHVOm+CfCRYv8fjgiklvq 6NOwZQtcfTU8/LCKfFlOOcXvXf+nP4VOIiKlUUdfij//Gd58029apvHnsq1eDcce618B1a8fOo1I YdHF2HJauRIaNvTbHNStGzpNPAweDGPG+KEcPTGK5I6Gbsrp+uvhmmtU5FNx1VWwYQM880zoJCKy K3X0u3j9dejZ06/63HPP0GniZdYsfxLVokVQvXroNCKFQUM3Kdq82U+jHDwY2rULGiW2uneHPfbQ dsYiuaJCn6I77/SHiYwZEzRGrK1d6y/Ivv66P51KRLJLhT4FS5dCkybw/vtQp06wGHlhxAgYNgze fhsq6CqQSFbpYmySnPMXX2+6SUU+Ey6+GCpVgsceC51EREAdPeCHam6/3Z+cpPNQM2PePGjdGhYu hP/5n9BpRPKXhm6SsHEjHH00PP00NG+e84fPa717w7p1fihHRLJDhT4JN97oV3aOGpXzh857Gzb4 C7PPPQdNm4ZOI5KfVOh3Y8ECv1fLggVQo0ZOH7pgPPcc3HMPzJ3rx+1FJLN0MXY3rrsO+vVTkc+m zp393++wYaGTiBSugu3oZ86ECy6Ajz/WBdhse+896NTJT2HdY4/QaUTyizr6Mtxzj59OqSKffSee 6C946zqISBgF2dHPnQtnnAHLlkGVKjl5yII3bZqfX//RRxqrF8kkdfSluPdeuOEGFflcatYMDjrI X5wVkdwquI5+4UJo2dKfdaqj73Jr4kR/AXzBAm2NIJIpOenozaytmS0xs0/M7KYSvl9kZuvN7P3E W990HzMd/fv7YqMin3unnuqPZXzppdBJRApLWh29mVUEPgJaA18A7wHnOecW73SbIqC3c67jbu4r 6x39smVw0kn+/T77ZPWhpBTjxvldQufM0UlUIpmQi46+MbDUOfepc24LMBo4s6QsaT5ORtx3H/To oSIf0hlnwNatfhtjEcmNdAv9QcDKnT5flfjazhxwspl9aGavmVmQ46NXrvSbl/XqFeLRZYcKFeC2 2+Duu/2uoSKSfelOdEvmv+pcoI5z7lszawe8DBxZ0g379ev3n4+LioooKipKM96P7r8fLrsM9t8/ Y3cp5fTb3/rdQouL/RYUIpK84uJiiouLU/qZdMfomwD9nHNtE5/fAmx3zg0o42dWAI2cc//a5etZ G6NfvdpvrrVoEdSsmZWHkBQ98QQ8+SS8+WboJCLxlosx+tlAPTM71Mz2ALoA43cJUcPMX3Yzs8b4 J5d//fSusufBB/12Byry0XHBBf6i+Ntvh04ikv/SGrpxzm01s2uAN4CKwOPOucVm1j3x/WHAb4Gr zGwr8C1wbpqZU7J2rT/p6IMPcvmosjuVK/stKO65ByZMCJ1GJL/l/YKpO+6AL77QsXZRtHkzHHGE L/QNG4ZOIxJPBb8f/YYNcPjh8M47ULduRu9aMuShh2DGDHjxxdBJROKp4Av9fffB/Pn+mECJpk2b /JPxlCn+grmIpKagC/2OAvLWW3DMMRm7W8mCe++FxYv9LBwRSU1BF/qHH/Zb444Zk7G7lCxZv96P 1c+a5d+LSPIKttB//70vGOPGQaNGGblLybI//hHWrIHhw0MnEYmXgi30w4b5Iv/aaxm5O8mBr7+G I4+EDz+EOnVCpxGJj4Is9Fu2+ILx9NNw8skZCCY506ePfzU2aFDoJCLxUZCFftQo+Nvf/CwOiZcv v/QXzhcvhho1QqcRiYeCK/TbtvlC8Ze/QKtWGQomOXXNNf5QmAGl7pYkIjsruEL//PN+Ac7MmTrU Iq4+/9yvkv3kE9hvv9BpRKKvoA4Hd87vm3LbbSrycXbwwXDWWRqnF8mkvCn0Eyb4An/66aGTSLpu vhkeecRvYSEi6cuLQu+cP7Gob1918/mgXj1o0waGDAmdRCQ/5MUY/eTJ0LMnLFzoj6qT+FuwAFq3 huXLoWrV0GlEoqtgxujvvhtuvVVFPp80aODXQfz1r6GTiMRf7Dv66dOhWzf4+GOolO4JuBIpc+bA mWf6k6h+9rPQaUSiqSA6+nvv9RfvVOTzT6NGcOyxfhGciJRfrDv6JUugRQv47DOoUiVLwSSot97y 118WLNCFdpGS5H1HP2gQdO+uIp/PTjnFX3uZPDl0EpH4im1H/803/mCRRYvgwAOzGEyCe/xxGDsW Xn01dBKR6Mnrjv6xx6BDBxX5QnD++fDee/6Cu4ikLpYd/dat/mCRsWN1sEih6NsX1q3zK2ZF5Ed5 29G//LI/nEJFvnD06OHPGFi3LnQSkfiJZaF/+GG47rrQKSSXatWC9u39eL2IpCZ2QzezZ0OnTn4R jebOF5Z334XOnWHpUv3bi+yQl0M3Awf6wyn0H73wNG7sO/vx40MnEYmXWHX0O46aW7YM9t03R8Ek Up5/3l+Q/cc/QicRiYa86+iHDoVzz1WRL2Rnnw0rVsDcuaGTiMRHbDr6zZvhkENg6lT4xS9yGEwi Z8AAv1Bu5MjQSUTCS6ajj81I97PPwvHHq8gLXHGFX0exejXUrBk6jUj0xWLoxjlNqZQf7bcfdOkC jz4aOolIPMSi0E+dCj/8AKedFjqJRMW11/pC//33oZOIRF8sCv3DD0OvXtqmVn5Uvz786lcwenTo JCLRF/mLscuX+/nTn30G1aoFCCaR9frr/gjJuXPVBEjhyovplYMHw2WXqcjLT7VpA99+C9OmhU4i Em2R7ug3bIDDDoP334eDDw4UTCJtyBB/KMnYsaGTiIQR+47+iSegVSsVeSldt25+leyKFaGTiERX ZDv67dvhyCP9opimTQMGk8jr08f/vjzwQOgkIrkX647+1Vf9Vgcnnxw6iUTdNdf4V3///nfoJCLR FNlCP3CgplRKcg45xB8iri0RREoWyaGb+fP9jIpPP4U99gibS+Jh+nS49FJYsgQqRLZ9Ecm82A7d DBoEV12lIi/Ja9oU9trLz60Xkf8WuY7+66+hXj346CM44IDQqSROnnwSRo2CSZNCJxHJnVh29MOH +z3HVeQlVZ07w4IFsHBh6CQi0RKpjv6HHxyHHgqvveb3MRFJ1V13wapVvmEQKQSx6+hffBGOOkpF Xsqve3d44QVYuzZ0EpHoiFSh37FLpUh51agBZ52ljl5kZ2kXejNra2ZLzOwTM7uplNsMSnz/QzNr WNp9ff01dOiQbiIpdL16wV/+Alu2hE4iEg1pFXozqwg8ArQF6gPnmdnRu9ymPVDXOVcP+D0wtLT7 69kTKlZMJ5EIHHcc1K0LY8aETiISDel29I2Bpc65T51zW4DRwJm73KYjMBLAOTcLqG5mNUq6s0sv TTONSEKvXn51tYikX+gPAlbu9PmqxNd2d5vaJd3Z3nunmUYkoWNHf3j4O++ETiL5Zv16mDkzdIrU VErz55Odm7nr1J8Sf65fv37/+bioqIiioqJyhRKpWNGfKztwIDRpEjqN5JPHH4c5c8JtuFhcXExx cXFKP5PWPHozawL0c861TXx+C7DdOTdgp9s8ChQ750YnPl8CtHDOrdnlvko8SlCkvNav9wfXzJsH tUt8DSmSmq1b/fWf55/3R5xGQS7m0c8G6pnZoWa2B9AFGL/LbcYD3RKBmgDrdi3yItmwzz7Qtas/ hUokE8aPh1q1olPkk5X2ylgzawc8DFQEHnfO9Tez7gDOuWGJ2+yYmbMJuMQ5N7eE+1FHLxn3ySd+ w7NPP4WqVUOnkbhr0QJ69IAuXUIn+VEyHX2ktkCIShbJL2ec4S/OXnFF6CQSZ++/73+Pli+HypVD p/lR7LZAEMmGHVMt1UdIOgYOhKuvjlaRT5YKveS9Vq38+zffDJtD4mvNGhg3Lr6vClXoJe+ZaQGV pOfRR/022PvvHzpJ+WiMXgrCd9/5s2VnzPAH24gk6/vv/e/OW29B/fqh0/yUxuhFEvbcEy6/HAYP Dp1E4ua55/zW6VEs8slSRy8FY9Uq+OUvYcUKP8deZHecg0aN4O67oX370GlKpo5eZCe1a0ObNjBi ROgkEhfTpsGmTdC2begk6VFHLwVl1iw491xYulRbYsvudeoELVv6aZVRpY5eZBcnneRPoXrlldBJ JOo+/RSKi+Gii0InSZ8KvRSc667zx1aKlOWRR+CSS+DnPw+dJH0aupGCs2WL39VywgR/GpXIrjZu 9FMq58yBQw8NnaZsGroRKUHlyn7MVQuopDQjR0JRUfSLfLLU0UtBWrvW7yv+0UdwwAGh00iUbN8O v/iFP2CkWbPQaXZPHb1IKfbfH373O7+0XWRnf/+7H5f/zW9CJ8kcdfRSsBYsgFNP9bMrfvaz0Gkk Kk47zR9Y061b6CTJUUcvUoYGDfzb88+HTiJRsXAhzJ8frYNFMkGFXgrajqmWejEpAIMGwZVX5t8r PA3dSEHbceFtxIj8GpOV1O24QL9kiV9UFxcauhHZjQoV4NprtYBK4K9/hTPPjFeRT5Y6eil4//63 ny89d65fJCOFZ8sWOPxwGD8eGjYMnSY16uhFkrDXXnDxxX7JuxSmsWN9oY9bkU+WOnoR/B71J57o p1rmw94mkppf/xpuvBHOPjt0ktSpoxdJ0mGHQfPmMGpU6CSSa7NmwerV0LFj6CTZo0IvktCrl59e t3176CSSSwMHQs+e+X0+gQq9SELz5v5s2TfeCJ1EcuWLL/yWB5ddFjpJdqnQiySY+a5eu1oWjiFD 4IIL8v8MYV2MFdnJ5s1+quWUKXD00aHTSDZ9952fTjtjBtSrFzpN+elirEiKqlSB7t39WL3kt6ef hsaN413kk6WOXmQXq1f7bn7ZMthvv9BpJBucg2OP9SuiW7cOnSY96uhFyqFmTTjjDBg+PHQSyZbJ k/37Vq3C5sgVdfQiJViwwHd6y5dD1aqh00imnXKKP/g7LnvOl0UdvUg5NWjgV0s+9ljoJJJpM2bA Z5/BeeeFTpI76uhFSjF7tl8Sv3Rp/u1PXsjat/e7VHbvHjpJZqijF0nDCSfAMcdoW4R8MmcOzJvn N7ErJOroRcowfTpcdBF89BFUqhQ6jaTrnHOgRQu/MC5fqKMXSdNvfgO1a8Po0aGTSLoWLoSZM+GK K0InyT119CK7MWmSP4Vq4UJ/IpXE0wUX+LnzN98cOklmqaMXyYDWrWHvvf3hFBJPS5fCxInQo0fo JGGo0Ivshhncdhvcc49fUSnxc999vsjvvXfoJGGo0IskoUMHv0/9a6+FTiKp+vxz/2rs2mtDJwlH hV4kCRUq+K7+7rvV1cfN//6vvwC7//6hk4Sji7EiSdq2zc+rHzIEWrYMnUaSsXo11K8PixdDjRqh 02SHLsaKZFDFinDLLb6rl3h44AHo2jV/i3yy1NGLpGDLFjjySL+X+cknh04jZVm71u81/+GHUKdO 6DTZo45eJMMqV4abbvIzcCTaBg6ETp3yu8gnSx29SIo2b4YjjoBXXoHjjw+dRkqyfr3/N5o1y7/P Z+roRbKgShXo0wfuvTd0EinNkCHQrl3+F/lklbujN7P9gOeAQ4BPgc7OuXUl3O5TYAOwDdjinGtc yv2po5fY2LQJDj8c3nrLz8SR6NjxbzNlip9xk++y3dHfDExyzh0JvJn4vCQOKHLONSytyIvETbVq cN110L9/6CSyq+HDoVmzwijyyUqno18CtHDOrTGzmkCxc+4XJdxuBXCCc27tbu5PHb3ESiGNA8fF jusnEyZAw4ah0+RGtjv6Gs65NYmP1wClzVR1wGQzm21mBbhBqOSrffbx+6fcd1/oJLLDE0/AcccV TpFPVplHKZjZJKBmCd+6bedPnHPOzEprx5s65740s/8BJpnZEufctJJu2K9fv/98XFRURFFRUVnx RILr1cvP1b79dk3jC23LFv+k++yzoZNkV3FxMcXFxSn9TLpDN0XOudVmdiAwpaShm11+5g5go3Pu gRK+p6EbiaU+feD772HQoNBJCtvIkf7trbdCJ8mtbA/djAcuSnx8EfByCQGqmtleiY+rAacB89N4 TJHI+cMf4Kmn/L4qEsa2bX66a9++oZNEUzqF/j7gVDP7GGiZ+Bwzq2VmryZuUxOYZmYfALOACc65 iekEFomamjX96UUPPhg6SeF68UW/O+Upp4ROEk1aGSuSAZ9/7i8CfvJJYW+HG8L27f7vvn9/OP30 0GlyTytjRXLk4IPhnHM0Th/ChAl+Z9H27UMniS519CIZsnQpNGkCy5cX7pF1ueYcnHSS32iuU6fQ acJQRy+SQ3XrQps2fp8VyY3Jk2HjRjj77NBJok0dvUgGLVwIrVr5rr5q1dBp8l+LFv6YwK5dQycJ Rx29SI4dcww0bQpDh4ZOkv+mToVVq+Dcc0MniT519CIZtngxNG8O8+bBgQeGTpOftmzxZwH07Qtd uoROE5Y6epEAjj4aLr8cbrghdJL8NXiwfxLt3Dl0knhQRy+SBZs2+WGcESOgZcvQafLLqlV+3vzM mf783kKnjl4kkGrV/JmlV18NP/wQOk1+6d3b7xqqIp88FXqRLOnY0U+51NYImTNxIsyeDbfcEjpJ vGjoRiSLVqyAE0+EOXPgkENCp4m3zZvh2GPhoYegQ4fQaaJDQzcigR12mD9ysFev0Eni7/77oUED FfnyUEcvkmXff+870QcegDPOCJ0mnpYt81sd6JXRTyXT0avQi+TApEnw+9/7lbNaMZsa53wX36wZ 3Hxz6DTRo6EbkYg49VTfkfbvHzpJ/Iwb57eU6N07dJL4UkcvkiNffAG/+hXMmAFHHRU6TTxs2gT1 6/tDv3WoSMk0dCMSMQ89BK+95qcJWpn/NQX8UM2qVf6oRimZCr1IxGzdCo0awa23ao+W3Vm0yO9O OX++P65RSqZCLxJBM2b4Ir9okQ4oKY1zfqimUyfo2TN0mmjTxViRCGra1B9Q0q9f6CTR9cwzsGED XHVV6CT5QR29SABff+03PZs40V+glR+tW+cvwL70kp+pJGXT0I1IhA0fDiNHwrRpUEGvrf+jZ0+/ EdywYaGTxIMKvUiEbd8Ov/41dO8Ol14aOk00zJkDp5/uF5btv3/oNPGgQi8ScXPnQrt2/sJsoRc2 PfGVjy7GikTc8cf7GTi33ho6SXiPPQaVKsHFF4dOkn/U0YsEtn69P35w7Fho0iR0mjC++spfnJ48 GX75y9Bp4kUdvUgM7LMP/PnP/tSkrVtDpwnjppuga1cV+WxRoReJgPPOg+rVYejQ0Elyb/p0P81U 6wqyR0M3IhGxeDE0bw7z5sGBB4ZOkxtbtvjrFH37akuI8tLQjUiMHH2037P+wgv9sXn5zjm48Uao VQs6dw6dJr+poxeJkK1b4dxz/fsXXoDKlUMnyp5+/fzq1+Ji2Hff0GniSx29SMxUquT3efnhB7jk Ej+3PB898ACMHu3H5lXks0+FXiRi9tgDxozx+7D36OGHOPLJ8OHwyCP+eMUaNUKnKQwq9CIRtOee MH68Xzl74435U+yffhruussX+Tp1QqcpHCr0IhG1997w97/DG2/An/4UOk36xo2DP/zB/3nq1g2d prBUCh1AREq3335+HLt5c9hrL7j++tCJymfSJLjiCn+M4jHHhE5TeFToRSKuZk2/NcCOYn/55aET pWb6dDj/fL/FwwknhE5TmFToRWLg4IN9V1xUBNWq+ZW0cTB3Lpxzjh+bb9YsdJrCpUIvEhP16vnx 7datfbHv2DF0orItWuT3lh82DE47LXSawqaLsSIx0qABvPKKH755883QaUq3fLkv7vffD2efHTqN qNCLxMyJJ8KLL/oVtDNnhk7zU6tW+Vcdffv6HSklPBV6kRhq3hyeesp3y++/HzrNj/75T1/kr7oK rrwydBrZQYVeJKbatPHbGrdv73e+DO2bb/xwTefO0KdP6DSyM12MFYmxc86BjRt9gZ06FQ4/PEyO jRv9E05REdx5Z5gMUjoVepGY69bNF9rWrX2xz/XWAt9+C2ee6RdCPfQQWJn7KEoIGroRyQM9esA1 1/hZOeec47f//f777D3e9u3wj3/41a61a8Ohh/pplCry0VTuQm9mvzOzhWa2zcyOL+N2bc1siZl9 YmY3lffxRKRsvXvDZ5/5uesDB8JBB/kngLffztymaB995GfTHHEEXH21n9s/bx48/jhUrJiZx5DM S6ejnw+cDfyjtBuYWUXgEaAtUB84z8yOTuMxI6u4uDh0hHKLc3ZQ/p1Vrw6XXeYP85g92xf7Sy6B I4/0Y+fLlqV+n199BYMHQ+PGfgz+u+/8K4Z58/zOmkuXZi5/CHH//UlGuQu9c26Jc+7j3dysMbDU Ofepc24LMBo4s7yPGWVx/mWJc3ZQ/tIceijcdpufkfPMM7B2Lfz619C0KTz6KPzrX6X/7ObN/oSr jh191z5rlt9eeOVKf2jIccf9OEyjv//oy/YY/UHAyp0+X5X4mojkiJlfZDVoEHzxBdxyC0yZAocd 9t/j+TuPu9eq5cfcO3Xyxf2pp6BtW38ClsRPmf9sZjYJqFnCt251zr2SxP3nyXEJIvmhcmXo0MG/ rV/vV9gOHOiLe7Vqfg/8Cy/0wzK1a4dOK5mS9uHgZjYF+INzbm4J32sC9HPOtU18fguw3Tk3oITb 6klBRKQcdnc4eKZeiJX2ILOBemZ2KPD/gS5AiRus7i6oiIiUTzrTK882s5VAE+BVM3s98fVaZvYq gHNuK3AN8AawCHjOOReBxdoiIoUj7aEbERGJtuArY+O8oMrMRpjZGjObHzpLeZhZHTObklj4tsDM rg2dKRVmVsXMZpnZB2a2yMz6h86UKjOraGbvm1kykxsix8w+NbN5iT/Du6HzpMLMqpvZi2a2OPH7 0yR0pmSZ2VGJv/Mdb+vL+v8btKNPLKj6CGgNfAG8B5wXl+EdM2sGbARGOeeODZ0nVWZWE6jpnPvA zH4OzAHOisvfP4CZVXXOfWtmlYDpwA3OuemhcyXLzHoDjYC9nHMRPzPqp8xsBdDIOVfGrPxoMrOR wFTn3IjE708159z60LlSZWYV8PWzsXNuZUm3Cd3Rx3pBlXNuGvBN6Bzl5Zxb7Zz7IPHxRmAxUCts qtQ4576NdJGzAAACLklEQVRNfLgHUBGITcExs9pAe+AxSp/QEAexy25m+wDNnHMjwF9PjGORT2gN LCutyEP4Qq8FVRGRmBnVEJgVNklqzKyCmX0ArAGmOOcWhc6UgoeAPsD20EHS4IDJZjbbzK4IHSYF hwFfmdnfzGyumf3VzKqGDlVO5wLPlHWD0IVeV4IjIDFs8yLQK9HZx4Zzbrtz7jigNtDczIoCR0qK mXUA/umce58YdsQ7aeqcawi0A65ODGfGQSXgeGCIc+54YBNwc9hIqTOzPYAzgBfKul3oQv8FsPPu 2XXwXb3kiJlVBsYATznnXg6dp7wSL7tfBU4InSVJJwMdE2PczwItzWxU4Ewpc859mXj/FfASfjg2 DlYBq5xz7yU+fxFf+OOmHTAn8fdfqtCF/j8LqhLPTF2A8YEzFQwzM+BxYJFz7uHQeVJlZv/PzKon Pt4TOBWI0AmqpXPO3eqcq+OcOwz/0vst51y30LlSYWZVzWyvxMfVgNPwu9pGnnNuNbDSzI5MfKk1 sDBgpPI6D98olCnoFkXOua1mtmNBVUXg8ZjN+HgWaAHsn1g8drtz7m+BY6WiKdAVmGdmOwrkLc65 vwfMlIoDgZGJWQcVgCedc28GzlRecRzGrAG85PsFKgFPO+cmho2Ukp7A04kmcxlwSeA8KUk8ubYG dnttRAumRETyXOihGxERyTIVehGRPKdCLyKS51ToRUTynAq9iEieU6EXEclzKvQiInlOhV5EJM/9 HzC+mVy4trE1AAAAAElFTkSuQmCC )

从数组中选择元素

假设我们想选取数组b中所有非负的部分首先可以利用 b 产生一组布尔值:

In [20]:

b >= 0

Out[20]:

array([ True,  True,  True,  True,  True,  True,  True,  True,  True,
        True,  True, False, False, False, False, False, False, False,
       False, False, False], dtype=bool)

In [21]:

mask = b >= 0

画出所有对应的非负值对应的点:

In [22]:

plot(a[mask], b[mask], 'ro')

Out[22]:

[<matplotlib.lines.Line2D at 0xa177be0>]

![]( AAALEgAACxIB0t1+/AAAELJJREFUeJzt3X+M5Hddx/Hnm912V4JYSZOi1yNNlqrtH0D9cVTRMgbu uvQSmhgjniKJmHDR3O79Z+Wu2jXxNE3QkF2S2mBBIglnAoScncLdiQxLEArVthR7bXprmty12ohA g8Jubq9v/9hh3ZvOzq+d3Zn57PORTO7743Pfec/nO/Paz35mvjuRmUiSyvKKQRcgSeo/w12SCmS4 S1KBDHdJKpDhLkkFMtwlqUBtwz0iPhIRL0TEEy3azEfEMxHxeETc0t8SJUnd6mTk/lFgerOdEXEH 8PrMvBF4H3Bfn2qTJPWobbhn5peA77Ro8k7gY/W2DwPXRMR1/SlPktSLfsy57wEubFi/CFzfh+NK knrUrzdUo2Hdv2kgSQM03odjPAfs3bB+fX3bFSLCwJekHmRm4wC6rX6M3E8B7wGIiFuB72bmC80a ZubI3u65556B17Bb62+s/fiBAyS87Hb37bcPvNbS+t76B3/rVScfhfwE8M/AT0fEhYh4b0QcjojD 9cB+CPj3iDgP3A/8Qc/VSB04MDvL8ampK7Ydm5pi/8zMgCqShk/baZnMPNRBmyP9KUdq77aDBwH4 44UFxpaXuTw5yfTMzPp2Sf2Zc98VKpXKoEvYklGuv1nttx08ODJhPsp9D9Y/qmIrczpd3VFE7tR9 SVIpIoIc0BuqkqQhY7hLUoGcc9eWLFarnJmfZ3xlhdWJCQ7Mzo7MXHgvdtvj1egy3NWzxWqV00eP cmJpaX3b8fpyiYG32x6vRpvTMurZmfn5K4IO4MTSEmcXFgZU0fbabY9Xo81wV8/GV1aabh9bXt7h SnbGbnu8Gm2Gu3q2OjHRdPvlyckdrmRn7LbHq9FmuKtnu+3PAOy2x6vR5kVM2pLFapWzG/4MwP7C /wzAbnu8GrxeL2Iy3CVpiHmFqiRpneEuSQUy3CWpQIa7JBXIcJekAhnuklQgw12SCmS4S1KBDHdJ KpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QC Ge6SVCDDXZIKND7oAtQfi9UqZ+bnGV9ZYXViggOzs9x28OCgy1KfeH7VrbbhHhHTwAeBMeBvMvPe hv3XAh8HXls/3gcy82/7X6o2s1itcvroUU4sLa1vO15fNgBGn+dXvWg5LRMRY8CHgGngZuBQRNzU 0OwI8GhmvgmoAH8ZEf5GsIPOzM9f8cIHOLG0xNmFhQFVpH7y/KoX7ebc9wHnM/PZzLwEnATubGjz H8Cr68uvBv47M1f7W6ZaGV9Zabp9bHl5hyvRdvD8qhftRth7gAsb1i8Cb25o82HgnyLieeBHgd/o X3nqxOrERNPtlycnd7gSbQfPr3rRLtyzg2McAx7LzEpETAFnI+KNmfm9xoZzc3Pry5VKhUql0kWp 2syB2VmOLy1d8av7sakppmdmBliV+sXzu7vUajVqtdqWjxOZm+d3RNwKzGXmdH39/cBLG99UjYiH gBOZ+eX6+ueBuzLzkYZjZav70tYsVqucXVhgbHmZy5OT7J+Z8c22gnh+d6+IIDOj6//XJtzHgaeB twHPA18DDmXmuQ1t/gp4MTP/NCKuA/4FeENmfrvhWIa7JHWp13BvOS2TmasRcQQ4zdpHIR/IzHMR cbi+/37gz4GPRsTjrL1B+4eNwS5J2lktR+59vSNH7pLUtV5H7v75AUkqkOEuSQUy3CWpQIa7JBXI cJekAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3 SSqQ4S5JBTLcJalAhrskFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJek AhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUBtwz0ipiPiqYh4JiLu2qRNJSIejYhvRkSt71VK kroSmbn5zogx4Gng7cBzwNeBQ5l5bkOba4AvA7dn5sWIuDYzv9XkWNnqviRJLxcRZGZ0+//ajdz3 Aecz89nMvAScBO5saPNbwKcy8yJAs2CXJO2sduG+B7iwYf1ifdtGNwKviYgvRMQjEfE7/SxQktS9 8Tb7O5lHuQr4WeBtwCuBr0TEVzPzma0WJ0nqTbtwfw7Yu2F9L2uj940uAN/KzB8AP4iIReCNwMvC fW5ubn25UqlQqVS6r3jILVarnJmfZ3xlhdWJCQ7MznLbwYODLkvqic/nnVer1ajVals/UGZuemMt /JeAG4CrgceAmxra/Azwj8AYayP3J4CbmxwrS/fFBx/MY1NTmbB+OzY1lV988MFBlyZ1zefzcKhn Z8usbnZrOeeemavAEeA08CTw95l5LiIOR8ThepungM8B3wAeBj6cmU9u/cfO6DkzP8+JpaUrtp1Y WuLswsKAKpJ65/N5tLWbliEzPwt8tmHb/Q3rHwA+0N/SRs/4ykrT7WPLyztcibR1Pp9Hm1eo9tHq xETT7ZcnJ3e4EmnrfD6PNsO9jw7MznJ8auqKbcemptg/MzOgiqTe+XwebS2vUO3rHe2SK1QXq1XO LiwwtrzM5clJ9s/M+OkCjSyfz4PX6xWqhrskDbHt+vMDkqQRZLhLUoEMd0kqkOEuSQUy3CWpQIa7 JBXIcJekAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtS gQx3SSqQ4S5JBTLcJalAhrskFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXI cJekAhnuklSgtuEeEdMR8VREPBMRd7Vo9wsRsRoRv9bfEiVJ3WoZ7hExBnwImAZuBg5FxE2btLsX +BwQ21CnJKkL7Ubu+4DzmflsZl4CTgJ3Nmk3A3wS+K8+1ydJ6kG7cN8DXNiwfrG+bV1E7GEt8O+r b8q+VSdJ6km7cO8kqD8I/FFmJmtTMk7LSNKAjbfZ/xywd8P6XtZG7xv9HHAyIgCuBd4REZcy81Tj webm5taXK5UKlUql+4olqWC1Wo1arbbl48TagHuTnRHjwNPA24Dnga8BhzLz3CbtPwr8Q2Z+usm+ bHVfkqSXiwgys+sZkZYj98xcjYgjwGlgDHggM89FxOH6/vt7qlaStK1ajtz7ekeO3CWpa72O3L1C VZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwl qUDtvqxjZC1Wq5yZn2d8ZYXViQkOzM5y28GDgy5LUgd8/W5dkeG+WK1y+uhRTiwtrW87Xl/2CSIN N1+//VHktMyZ+fkrnhgAJ5aWOLuwMKCKJHXK129/FBnu4ysrTbePLS/vcCWSuuXrtz+KDPfViYmm 2y9PTu5wJZK65eu3P4oM9wOzsxyfmrpi27GpKfbPzAyoIkmd8vXbH8V+h+pitcrZhQXGlpe5PDnJ /pkZ34yRRoSv3//X63eoFhvuklQCvyBbkrTOcJekAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwl qUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBeoo3CNiOiKeiohnIuKuJvt/OyIej4hv RMSXI+IN/S9VktSptl/WERFjwNPA24HngK8DhzLz3IY2vwg8mZkvRsQ0MJeZtzYcxy/rkKQubeeX dewDzmfms5l5CTgJ3LmxQWZ+JTNfrK8+DFzfbSGSpP7pJNz3ABc2rF+sb9vM7wEPbaUoSdLWjHfQ puO5lIj4VeC9wFua7Z+bm1tfrlQqVCqVTg8tSbtCrVajVqtt+TidzLnfytoc+nR9/f3AS5l5b0O7 NwCfBqYz83yT4zjnLkld2s4590eAGyPihoi4GngXcKrhzl/HWrC/u1mwS5J2VttpmcxcjYgjwGlg DHggM89FxOH6/vuBPwF+HLgvIgAuZea+7StbktRK22mZvt2R0zKS1LXtnJaRJI0Yw12SCmS4S1KB DHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrskFchw l6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAhnuklQgw12SCmS4S1KBDHdJ KpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgdqGe0RMR8RTEfFMRNy1SZv5+v7HI+KW /pcpSepGy3CPiDHgQ8A0cDNwKCJuamhzB/D6zLwReB9w3zbVOlC1Wm3QJWzJKNc/yrWD9Q/aqNff q3Yj933A+cx8NjMvASeBOxvavBP4GEBmPgxcExHXNTvY3bffzmK1usWSB2PUnyCjXP8o1w7WP2jd 1L9YrXL37bczV6mMdF4BjLfZvwe4sGH9IvDmDtpcD7zQeLA/O3OG40tLANx28GC3tUrStlmsVjl9 9Cgn6hkFjHRetRu5Z4fHiU7/34mlJc4uLHR4WEnaGWfm568IdhjtvIrMzfM7Im4F5jJzur7+fuCl zLx3Q5u/BmqZebK+/hTw1sx8oeFYnf6gkCRtkJmNA+i22k3LPALcGBE3AM8D7wIONbQ5BRwBTtZ/ GHy3Mdh7LU6S1JuW4Z6ZqxFxBDgNjAEPZOa5iDhc339/Zj4UEXdExHngf4Hf3faqJUkttZyWkSSN pr5foTrqFz21qz8iKhHxYkQ8Wr/dPYg6m4mIj0TECxHxRIs2Q9n37Wof5n4HiIi9EfGFiPi3iPhm RMxu0m5Y+79t/cN8DiJiMiIejojHIuLJiPiLTdoNa/+3rb/r/s/Mvt1Ym7o5D9wAXAU8BtzU0OYO 4KH68puBr/azhh2ovwKcGnStm9T/K8AtwBOb7B/mvm9X+9D2e72+1wJvqi+/Cnh6xJ77ndQ/7Ofg lfV/x4GvAr88Kv3fYf1d9X+/R+59vehpADqpH17+0c+hkJlfAr7TosnQ9n0HtcOQ9jtAZv5nZj5W X/4f4Bzwkw3Nhrn/O6kfhvscfL++eDVrA7VvNzQZ2v6HjuqHLvq/3+He7IKmPR20ub7PdfSqk/oT +KX6r3UPRcTNO1bd1g1z37czMv1e/3TZLcDDDbtGov9b1D/U5yAiXhERj7F2AeUXMvPJhiZD3f8d 1N9V/7f7KGS3+n7R0w7rpI5/BfZm5vcj4h3AZ4Cf2t6y+mpY+76dkej3iHgV8EngaH0E/LImDetD 1f9t6h/qc5CZLwFviogfA05HRCUzaw3Nhrb/O6i/q/7v98j9OWDvhvW9rP10bNXm+vq2YdC2/sz8 3g9/fcrMzwJXRcRrdq7ELRnmvm9pFPo9Iq4CPgV8PDM/06TJUPd/u/pH4RwAZOaLQBX4+YZdQ93/ P7RZ/d32f7/Dff2ip4i4mrWLnk41tDkFvAfWr4BtetHTgLStPyKui4ioL+9j7eOkzebGhtEw931L w97v9doeAJ7MzA9u0mxo+7+T+of5HETEtRFxTX35R4D9wKMNzYa5/9vW323/93VaJkf8oqdO6gd+ Hfj9iFgFvg/85sAKbhARnwDeClwbEReAe1j71M/Q93272hnifq97C/Bu4BsR8cMX5THgdTD8/U8H 9TPc5+AngI9FxCtYG7T+XWZ+flSyhw7qp8v+9yImSSqQX7MnSQUy3CWpQIa7JBXIcJekAhnuklQg w12SCmS4S1KBDHdJKtD/AUtnPQ2WTKLjAAAAAElFTkSuQmCC )