Files
ailearning/docs/da/083.md
2020-10-19 21:08:55 +08:00

144 KiB
Raw Blame History

处理文本(基础)

In [1]:

import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline

matplotlib 对文本的支持十分完善,包括数学公式,Unicode 文字,栅格和向量化输出,文字换行,文字旋转等一系列操作。

基础文本函数

matplotlib.pyplot 中,基础的文本函数如下:

  • text()Axes 对象的任意位置添加文本
  • xlabel() 添加 x 轴标题
  • ylabel() 添加 y 轴标题
  • title()Axes 对象添加标题
  • figtext()Figure 对象的任意位置添加文本
  • suptitle()Figure 对象添加标题
  • anotate()Axes 对象添加注释(可选择是否添加箭头标记)

In [2]:

# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
%matplotlib inline

# plt.figure() 返回一个 Figure() 对象
fig = plt.figure(figsize=(12, 9))

# 设置这个 Figure 对象的标题
# 事实上,如果我们直接调用 plt.suptitle() 函数,它会自动找到当前的 Figure 对象
fig.suptitle('bold figure suptitle', fontsize=14, fontweight='bold')

# Axes 对象表示 Figure 对象中的子图
# 这里只有一幅图像,所以使用 add_subplot(111)
ax = fig.add_subplot(111)
fig.subplots_adjust(top=0.85)

# 可以直接使用 set_xxx 的方法来设置标题
ax.set_title('axes title')
# 也可以直接调用 title(),因为会自动定位到当前的 Axes 对象
# plt.title('axes title')

ax.set_xlabel('xlabel')
ax.set_ylabel('ylabel')

# 添加文本,斜体加文本框
ax.text(3, 8, 'boxed italics text in data coords', style='italic',
        bbox={'facecolor':'red', 'alpha':0.5, 'pad':10})

# 数学公式,用 $$ 输入 Tex 公式
ax.text(2, 6, r'an equation: $E=mc^2$', fontsize=15)

# Unicode 支持
ax.text(3, 2, unicode('unicode: Institut f\374r Festk\366rperphysik', 'latin-1'))

# 颜色,对齐方式
ax.text(0.95, 0.01, 'colored text in axes coords',
        verticalalignment='bottom', horizontalalignment='right',
        transform=ax.transAxes,
        color='green', fontsize=15)

# 注释文本和箭头
ax.plot([2], [1], 'o')
ax.annotate('annotate', xy=(2, 1), xytext=(3, 4),
            arrowprops=dict(facecolor='black', shrink=0.05))

# 设置显示范围
ax.axis([0, 10, 0, 10])

plt.show()

![]( AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4FeX5xvH7yQLZCIvsCIIIFhSQRVBkrTsoBfe2ikDd fmgr4lpFFi1C1bZQFeuCVK0oCCKKoiAQQAREQWRTFgk7JKxhS0KS9/fHOTmeQxaGJTkJfD/X5ZUz 78yZeWaSpnce3pljzjkBAAAAOLaIcBcAAAAAlBaEZwAAAMAjwjMAAADgEeEZAAAA8IjwDAAAAHhE eAYAAAA8IjwDKHZmlmxmOWY25hTsq5N/Xzlm1vFkt/Nv+wcz+9nMMv3bP2hmg3Pff7I1n6mO5xqa Wd2g79edxVEfAHhBeAYQTqfyQfPO4/4K3c7Mqkr6r6QGknZLWiBpq6RN/tcLTrbQ010hfxzluYYe ArXX7ysAFIuocBcAACVMA/l+NzpJtzvnvgpaN7q4izGzWOfc4eI+blFwzo1WwdewoIBsRVQOAJwQ Os8AwinCzJ42s+1mdtDM3jOzxNyVZhZpZg+b2QozyzCzNDObYWa/PdaOzew+M9toZofM7BNJtTy8 Z7CkubmLkqblTvPIr0NqZmXM7CUz22tmu8xspJk9l892Sf6xWcHHKmw7M3vczLZK2uJfF2Vmj5nZ Sv+12GNm482s7jHOqZqZvWtmW/3vSzGzuWb2R//6fKdHHN09Pmq7/mb2vpkdMLMdZjYweBtJdfy7 uTP4HI8+ZzNLkjTw10OG1JFvmDazZmY2ycx2+s9nhZndV9g1AIBTic4zgHC6UVKWpO2Sqkr6vXy/ l271r39NUh//67WSKkjqLKmjmV3nnPsiv52aWRdJo/yLuyQ1kvSf3NWF1LNJ0ir/9pK0UlKa/7/c MBcc6v4m6X7/62R//bH5bKfjHLtUUjtJPwXt7x1Jt0nKkbRCUg1JN0lqZ2YXOedSCjinUZJ6SDog 6UdJZ0m6RL7zfO+oOrzWN1RSqqS9kmpKGmxmqZImSVooqbmkMpJ2yvd9K2ifKyTV169/2ORO58j3 XMzsIknz5LsmO+W7Pk0kjTKzqs65Z/J7HwCcSnSeAYRTuqQGzrlGkkb6x24ys3pmVl+/BueXnXMN JZ0raY18v7v+Vsh+H/d/TZZ0rnOugXzBrlD+aQV9cxcl9XXOtXXOLdFRodvM4iT92b842Tl3rqR6 8s2PPlnRkro655pIamBmzeQLzk7Sbc65ZvJdiy2SqkvqV8i+Gvq//p9z7mJ/ndUlvXTUdsczPeIb SXXlO99v/WOPO+e2O+cule+PIUma4r9+bfPbiXPufklv/rro29Y5N7WAegbJF5wXS6rtvw4P+dc9 EfyvFgBQVAjPAMIpyTm30/96XND4BZJa+l87SWMlyTl3QNIU/3gzMwsOWMGvm/i/fumc2+9/PT5o f4XxGiLPk1TW/3qcv76DQfWdjJ+dc9P8+3SSWgfVNt4/7SFNv3Zs2xSyr0/8X982s3Vm9rmkeyVt O4n6PnLO5Tjnjkj62D9W28ziT2BfxxPac69DC0mH/dfhX/6xspIuOoHjA8BxYdoGgHDKL/ya8k4h KCgkn8j+i1p+x8k9l8igsfKF7GNHAe+XpO/km+oSLLmgHTnnnjKzeZKuknShpMskXSPpZvmmVwTv 22t94biuwXZIWp/P+JHiLgTAmYfwDCCcOppZZX/3+Wb/mJNvLmyE/7XJN5d4vpmVk3Sdf7sfnHMu qPkcHAKXSWov6SozS/B3rG86xbWvlW/aSYx8c7c/MLOEoPqC5YbhumYWId984GsL2ffR3fFFQa/f cM69kbtgZm2UN0wraH07SbOdc5/7l2+Tr5Pf1MwqKnR+8Xn+bTqp8PDcw8xelS9s/84/ttHfeZek Q/6vCYXsI1futjKzOOfcoUK2/dZ/vF2SrnXO7fO/r6KkLs65+R6OBwAnhWkbAMIpRtIaM/tZv87b neCcS3bO/SLpLf/YA2a2Vr5u43mSsiUNOGpfwR3Q5/1f60pKNrN1km7JZ7vCFLqdP+Tlzhu+0czW S/pFvhvojjbD/7W2pCWSlssfVL3U45xbKul9/+Jr/ukXP5rZXknz5esmF2S4pN1mttbMvtev13Sz c26P/zF4uaHzEf8TQT6R78bEgrSW73ux3v/a6ddrLvluRpSkG8zsezN7SwXL3dYkrTSz+WZWr4Bt h0g6LKmxpC1mtsTMkuW7efHoOdwAUCQIzwDCIXdaxgRJ/5CUKOmgpA8k3R203b2SHpXvqRe15LuR bqakq5xzXwbtK/irnHOfSXpAvhvqYuW7yfD/jt6ukNry2y6/9w2Q9LJ8T50oL9+86tygmB603RhJ /5bvCRFnS/pKv94gGbzfwj4QpKekx/TrkzZqS9rg38/nhZzPB/I9ASNevrnk++Sbpxzc+e4l3yP6 jvj3fb98Tx4pqJYnJSVJKidfcH3WOfdq0PoB8j05I0O+ecgXBp3f0aZIekO+bnJt+cJ4bND64O/r D/I9ieQj+TrWjeQL3V/I93MCAEXOfPeiAACOl/k+jTDdOZfmX46Vb4pFY0nznXOFdYRLFf/zpH/x L/Zyzr0TvmoAIHyY8wwAJ66tpP+Z2SJJ+yVdLKmafB3cp8NZGACgaDBtAwBO3C/yPf3iQvmeYGGS Jkvq4JybGc7CihD/XAngjMa0DQAAAMAjOs8AAACAR4RnAAAAwCPCMwAAAOAR4RkAAADwiPAMAAAA eER4BgAAADwiPAMAAAAeEZ4BAAAAjwjPAAAAgEeEZwAAAMAjwjMAAADgEeEZAAAA8IjwDAAAAHhE eAYAAAA8IjwDAAAAHhGeAQAAAI8IzwAAAIBHhGcAAADAI8IzAAAA4BHhGQAAAPCI8AwAAAB4RHgG AAAAPCI8AwAAAB4RngEAAACPCM8AAACAR4RnAAAAwCPCMwAAAOAR4RkAAADwiPAMAAAAeER4BgAA ADwiPAMAAAAeEZ4BAAAAjwjPAAAAgEeEZwAAAMAjwjMAAADgEeEZAAAA8IjwDAAAAHhEeAYAAAA8 IjwDAAAAHhGeAQAAAI8IzwAAAIBHhGcAAADAI8IzAAAA4BHhGQAAAPCI8AwAAAB4RHgGAAAAPCI8 AwAAAB4RngEAAACPCM8AAACAR4RnAAAAwCPCMwAAAOAR4RkAAADwiPAMAAAAeER4BgAAADwiPAPA GcTM2pvZT4Wsr2tmOWbG/z8AQD745QgApzF/ED43d9k5N9c595ug9clm9tvwVAcApQ/hGQBOf1bI OneM9QCAIIRnAChCZvaEma01szQzW2Fm3YPWvWpmE4KW/25mX/lflzWzF81sg5lt928b419X2cym mNkeM9tlZnPMLE8ANrM5/pdLzWy/md1sZp3MbJN//buS6kj61L/+kXz2Ud7MRpvZVjPbbGbPMqUD wJmMX4AAULTWSmrnnEuUNETS/8ysun9df0lNzOxOM2svqY+knv51wyWdJ6mZ/2stSQP96x6WtElS ZUlVJf3VOeeOPrBzroP/ZVPnXDnn3IdHrb9D0kZJ1/nXv5hP/f+VlCmpvqTmkq6SdNfxXQIAOH0Q ngGgCDnnJjjntvtfj5e0RlJr//JhSXdI+pekdyU94Jzb6u8i3y2pv3Nur3PugKRhkm7z7zZTUg1J dZ1z2c65eUVRu5lVk3StpIecc4edc6mSRgTVAQBnnKhwFwAApzMz6ynpIUl1/UMJks7KXe+c+9bM fpGvi5zbGa4iKU7S90GzMUy/NjxekDRY0jT/+tedc38vgvLPkRQtaVtQHRHydasB4IxE5xkAioiZ nSPpdUn3S6rknKsoabmCbtAzs/sllZG0VdJj/uGdkg5Lauycq+j/r4J/6oeccwecc4845+pL6iap /0k8MSPPdI8gmyRlSDorqI7yzrkmJ3gsACj1CM8AUHTi5QunOyVFmFlvSRfmrjSzhpKelfRH+eY6 P2ZmzZxzOZLekDTCzKr4t61lZlf5X3c1s/P80zvSJGX7/8vPDvnmKxekwPXOuW2Spkn6p5mVM7MI M6tvZh3y2x4AzgSEZwAoIs65lZL+IWm+pO3yBeevJcnMIuWb5zzcObfMObdW0pOS3jWzaEmPy3ez 4QIz2ydpuqSG/l038C/vl/SNpFecc7MLKGOwpLf9T+a4Sb4wH9xtHiZpgH99/9zSg9b3lK8zvlLS bvmmllQXAJyhLJ8btE/Njs3ektRVUkruP/GZWSVJ4+SbR5cs6Rbn3N4iKQAAAAA4xYqy8zxG0jVH jT0habpzrqGkGf5lAAAAoFQoss6zJJlZXUmfBnWef5LU0Tm3w/+c06Tgj4kFAAAASrLinvNczTm3 w/96h6RqxXx8AAAA4ISF7YZB/6dhFV3bGwAAADjFivtDUnaYWXXn3HYzqyEpJb+NzIxQDQAAgGLh nLNjb+VT3OH5E0l3Svq7/+vHBW1YlHOxUToNHjxYgwcPDncZKGH4uUB++LlAfvi5QH6CPkHVkyKb tmFm78v3/NHzzWyT/8MBhku60sxWS/qtfxkAAAAoFYqs8+yc+30Bq64oqmMCAAAARYlPGESp0alT p3CXgBKInwvkh58L5IefC5wKRfqc5xNlZq4k1gUAAIDTi5kd1w2DdJ4BAAAAjwjPAAAAgEeEZwAA AMAjwjMAAADgEeEZAAAA8IjwDAAAAHhEeAYAAAA8IjwDAAAAHhGeAQAAAI8IzwAAAIBHhGcAAADA I8IzAAAA4BHhGQAAAPCI8AwAAAB4RHgGAAAAPCI8AwAAAB4RngEAAACPCM8AAACAR4RnAAAAwCPC MwAAAOAR4RkAAADwiPAMAAAAeER4BgAAADwiPAMAAAAeEZ4BAAAAjwjPAAAAgEeEZwAAAMAjwjMA AADgEeEZAAAA8IjwDAAAAHhEeAYAAAA8IjwDAAAAHhGeAQAAAI8IzwAAAIBHhGcAAADAI8IzAAAA 4BHhGQAAAPCI8AwAAAB4RHgGAAAAPCI8AwAAAB4RngEAAACPCM8AAACAR4RnAAAAwCPCMwAAAOAR 4RkAAADwiPAMAAAAeER4BgAAADwiPAMAAAAeEZ4BAAAAjwjPAAAAgEeEZwAAAMAjwjMAAADgEeEZ AAAA8IjwDAAAAHhEeAYAAAA8IjwDAAAAHhGeAQAAAI8IzwAAAIBHhGcAAADAI8IzAAAA4BHhGQAA APCI8AwAAAB4RHgGAAAAPCI8AwAAAB4RngEAAACPCM8AAACAR4RnAAAAwCPCMwAAAOAR4RkAAADw iPAMAAAAeER4BgAAADwiPAMAAAAeEZ4BAAAAjwjPAAAAgEeEZwAAAMCjqHAXAKBwg/v1k/buDXcZ QOEqVNDgESPCXQUAFDnCM1DS7d2rwXXrhrsKoFCDk5PDXQIAFAumbQAAAAAeEZ4BAAAAjwjPAAAA gEeEZ6CUSkpOVs9Jk4rteJvT0nTxG2/kGZ+/aZMGzZolSfp640Z9u2XLMff19MyZGr14sSTpzo8/ 1rb9+0+4roOZmXr9++9P+P1b0tI0fsWKfNcFn9uJ+N+PP+rRadMK3Waex2sWDg1eekkHMzPDXQYA lCiEZ6CUWrp9u5pXr15sx1uybVu+x7u0dm0N6dxZkjR6yRLtPnz4mPv6MSVFzWvUkCS93b27apQr d8J1fbd1q2auX3/C7//ql1+0eNu2fNcFn9uJ+GH79sB5FuRNj9esqDnnQpbTMjJkkuLLlAlPQQBQ QvG0DaCUWrpjhyrFxuqSN99U6qFDeqtbN3WsW1dHsrP1yLRpStqwQdk5OXr+yivVpUEDzU5O1lMz Z+rrPn20OS1N1773nj6+9VbVrVBBg5KSNHP9eu1JT9eDbdrovlatJEnPzp6t95cvV+W4OF1QpYqa VauWp46bP/xQD7Zpo++2btX7y5ZpybZtevGbb/RVz56665NP9OOOHdqbnq7bLrxQz/iD6IqUFF1Y tapWpKTowS++0Fc9eyojK0tPzZypWcnJOpiZqX6XXKL7WrXSQ198odkbNig9K0tdGzTQC1ddFTj2 L3v26LaJExUdEaHmr72mV7p0UY2EBD305Zfasn+/Isz0bo8eanjWWeozebLa1q6tu1q00OjFizVl zRr1v+QS9Z82TRVjYvTlunX66JZbVK9ixZBz69emjS6rU0dn//Of6nvxxfr4p5906MgRfdWzp6on JIRci/0ZGbp3yhQt3bFDTatV044DB9T7ooskKd9rMWLBAs/XLNhPO3eq3xdfaMfBgzqSna0vbr9d 1eLj8/2+S9Lf5szRhJUrlZmdrUfatlWf5s11IDNTjV55RVfXr6+FW7boo1tu0c+7dumvM2YoOiJC 1zdsqGb+P5amrlmjwbNnKyMrS9nOadHddysmiv/7AHBmCstvPzP7q6TbJeVIWiapt3MuIxy1AKXV D9u3q/tvfqMFd92l6evW6elZszSnd28NnDVLiWXLaul992lLWpoue+stJffrp45166psVJSmrF6t v82Zo1Fduqh+pUp6ZvZs1U5M1Dd/+pPSs7LU9NVXdVeLFnr7hx+0LCVFK/r21db9+3Xuv/+tmT17 5qljRUqKmlWrpra1a2vEggX64b77Auuev/JKVYqNVXZOjhqPGqW/tmunjOxsxUZHq0xkpJb53ytJ /b74QhViYvT9PfdIklIPHtTUNWu0NyNDi++9V5K0Lz095NjnVqyo7uefr+vPP19dGjTQkexsXfPe e3rj+ut1bsWK+nzNGg3/+mu99bvfaUCHDuo6dqzqVqigN5cs0cyePRUbHa3WtWrpH1ddpcZVquR7 bk2rVdOWtDTtPHRIv61XT0+2b69+X3yhaevWqWezZiHb9/38c1169tkae+ONGr9ihe78+GM18u83 v2vxlzZtPF2z2OjowPq96em6/v33Ne6mm9SiRg3tS09XXHR0gd/31777Tmt379aSe+/VoSNH9JtX XtFtF16o5Skp2puerocuuUQXVK2qlampenLGDCXdeafKx8So1euv6+bGjSVJD37xhRbfe68SypRR WkYGwRnAGa3YfwOaWV1Jd0tq5JzLMLNxkm6T9HZx1wKUVkeys7Xr8GE92b69JKlZ9eraeeiQsnNy 9L9ly7TuL3+RJNVKTFRmdnbgfQPat9fV//ufRnfrpvbnnKOsnBy9/O23qpWYqP/45w1nZmcrxzn9 Y/58Tf3jH2VmqpWYqAoxMWp6VOc5PStLmdnZKle2rFbv2qX6lSoF1m1JS9NfZ8zQspQUSdKmffsU HRmpb7dsCexnWVCHduratYG6JalKfLyqxMfrq19+0bC5c3V706aqXb58nmvxY0qKnurQQZL08U8/ aWVqqm4cP16SlJWTow516kjyBe3WtWrp7k8/1Td9+gQC6c87d+o3lSvn2W/wuc3btEldGzbUJWef Hbj+FWNiQrbftn+/5m/apHd79JAkXVClihpXqaIIswKvxdrduz1ds2BvLl6smxs3Vgv/dJDyMTHK KuT7PnLhQs28806ZmeLLlFG1+HjtTU/Xsh079KfmzXVB1aqSpJcWLtTDl16qs+LiJEkNzzor0Hku V7as7v/8c/W56CJ15JnjAM5w4WgfpEk6IinOzLIlxUkqmXfLACXUTzt36rxKlRQV4bttYfG2bbqo enVtSktT9YQElfEHrq3796ta0NSCd378UZXj4lQ1Pl6SlLx3r35TubLm9O4dsv8j2dlKOXhQ51So IEnauG+fEsqUUbmyZUO2W5GSEujY/rhjh5r6g5gk3TFpkh5o3Vrv9OihX/bs0XVjxyoqIkJLd+wI zJ1elpKimxo31jL/HOjIiNDbMFrVrKlFd9+tCStXqu1bb2nK738fCHSSb57u5rQ0nZ2YGKjhud/+ Vr2bN89zzbakpemH7dtVJjJSlf0BceehQyofE6MIszzbB5/b8pQUXVKrVmDdjykpeqRt29DtU1ND avs+aI54QdfC6zULtnTHjkBHONemffvyfN+rJyQoxzntOnw4ML0kPStLuw4fVs1y5fTjjh36bb16 gX0sT03V/a1bB67r4m3b9M+rr5YkLbzrLk1ds0bPzpmjz9es0d+vvDLP9QKAM0Wx3zDonNst6R+S NkraKmmvc+6r4q4DKM1+2L5d6/fsUWZ2tg5kZuqZ2bPV75JLdFZsrHYcOKBDR44oOydHD0+bpr/4 A9HQOXMUExmpCbfcoiGzZ0uSqsTFadXOndrqf9rFvvR0bQzqdm7at085zunxr77SRfncLBg87WLD 3r2qGXTj34rUVF1er54ys7P12PTpgWC5dPv2wHtW7dypC6pWVfWEBK3ZtUtH/N3S1IMHJUmrd+1S 9YQE/V+rVmpQqZJyjrqpbdfhw0oIuqGtRrly+mLdusDNb8t27JAkHcjM1I3jx+vla69Vx3PO0VtL lkjy/fFQs4CbFYPPbVlKSuD8nXNK3rs3ZG60JFWOi9PqXbuUlZOjXYcOadjXXwfeX9C18HrNglWP j9dyf2c6OydHew4fVuW4uDzf9z+3bq0IM8VERQWeZjJw1iz1bNpUki8sB/9LwlmxsYHr9ep332lP errOTkzUut27FWGm688/X39s0kQZQf+SAQBnonBM26gvqZ+kupL2SfrQzP7onHuvuGsBSqsfd+zQ DY0aqe3o0TqclaWBHTqotb8z+nSHDmr1+uuSpDuaNlXv5s01bvlyzd24UZ//8Y+KMFNsdLSmrVun q+rX17DLL1fnt99WbFSU4suU0evXXSdJerZzZ1321luqX6mSLqhSRdX83epgy1NS1MZ/3N/Wq6db J0zQBytWaP6f/qTH2rZV89deU72KFVU7MVHnn3WWr/aUFA2vXl1pGRkqGxmpMpGRurBqVf3u/PN1 4auvKi46Wr87/3w90rat7pg0SQczM1UmMlJ/aNIkz5MrKsfFqU758rpg1Cg927mz+jRvrlnJyWr0 yiuKjY5Wk6pV9Xb37vrDxInqe/HFan/OOTo7MVFXvvuu/tSihRpVrqydhw6pyauv6o3rrw9Myzj6 3JYHhefkvXtVJ5/pIxdVr64WNWqo0SuvqHn16qpXoULgPQVdC6/XLFj/Sy/V7ydO1LgVKxQVEaHX rrtOrWrWzPf7LkkvX3utrnz3XeU4p2vOO0+DOnWSJK3fsydkysgT7drpjx99pBELF+ra884L1P7W kiWasGqVypUpo7MTE/XW736X348kAJwx7OjHExX5Ac1ulXSlc+4u//Idki5xzt0ftI0bNGhQ4D2d OnVSJ/8vfOBMM7hXLw1mnilKuMHJyRr83/+GuwwAOKakpCQlJSUFlocMGSLnXN75ewUIx5znnyQ9 bWaxktIlXSHp26M3Gjx4cDGXBQAAgNPd0U3ZIUOGHNf7wzHneamkdyR9J+lH//DrxV0HAAAAcLzC 8rBO59zzkp4Px7EBAACAE8XHcwMAAAAeEZ4BAAAAjwjPAAAAgEdhmfMM4DhUqKDBycnhrgIonP/T KAHgdFfsz3n2wsxcSawLAAAApxczO67nPDNtAwAAAPCI8AwAAAB4RHgGAAAAPCI8AwAAAB4RngEA AACPCM8AAACAR4RnAAAAwCPCMwAAAOAR4RkAAADwiPAMAAAAeER4BgAAADwiPAMAAAAeEZ4BAAAA jwjPAAAAgEeEZwAAAMAjwjMAAADgEeEZAAAA8IjwDAAAAHhEeAYAAAA8IjwDAAAAHhGeAQAAAI8I zwAAAIBHhGcAAADAI8IzAAAA4BHhGQAAAPCI8AwAAAB4RHgGAAAAPCI8AwAAAB4RngEAAACPCM8A AACAR4RnAAAAwCPCMwAAAOAR4RkAAADwiPAMAAAAeER4BgAAADwiPAMAAAAeEZ4BAAAAjwjPAAAA gEeEZwAAAMAjwjMAAADgEeEZAAAA8IjwDAAAAHhEeAYAAAA8IjwDAAAAHhGeAQAAAI8IzwAAAIBH hGcAAADAI8IzAAAA4BHhGQAAAPCI8AwAAAB4RHgGAAAAPCI8AwAAAB4RngEAAACPCM8AAACAR4Rn AAAAwCPCMwAAAOAR4RkAAADwiPAMAAAAeER4BgAAADwiPAMAAAAeEZ4BAAAAjwjPAAAAgEeEZwAA AMAjwjMAAADgEeEZAAAA8IjwDAAAAHhEeAYAAAA8IjwDAAAAHhGeAQAAAI8IzwAAAIBHhGcAAADA o6hwFwAAxW306NHKzs7WN998o1deeUXx8fHhLgkAUEqYcy7cNeRhZq4k1gWg9JszZ47i4uLUqlUr vfLKK1q9erVGjhwZ7rIAAGFiZnLOmdftmbYBlHDjx4/X22+/nWe8V69euvjii8NQUem2fv16/e9/ /5Mk1a1bV+vXrw9zRQCA0oTOM1DC3XTTTdq1a5dmzZoVMv7LL78oPT1djRs3DlNlv3r66ac1btw4 paSk6M4771RERIScc9qyZYumTJmioUOHqn///uEuU5KUk5OjAwcOKDExUU8//bQqV66sBx98MNxl AQDC5Hg7z8x5Bkqpc889N9wlBDz77LNaunSp2rZtm2cKxJgxY1SmTJkwVZZXRESEEhMTtX37di1b tkwTJkwId0kAgFKEaRsodebPn69u3bqpZs2aSkhIUPPmzTV27NiQbXKnNEyfPl1NmzZVQkKC2rdv r5UrVx5z/3PnzlXHjh0VHx+vypUr65577tGBAwdCthk1apRq166thIQEdevWTdOnT1dERITmzJkT 2KZTp066+eabQ96XlJSkiIiIQB3HOpdevXrpo48+0uzZsxUREaGIiAg988wzIecYbPz48WrSpIli YmJUp04dDRgwQNnZ2afs2hTEOad58+bpkksuybOuadOmOvvss09430UhKytL//znP/XOO+8oKooe AgDAO8IzSp0NGzaobdu2evPNNzVlyhTdeOON6t27tz744IPANmamjRs36rHHHtPTTz+t999/Xykp Kbr11lsL3fe8efN0xRVXqGbNmpo4caJGjBihzz//XL179w5sM3nyZD3wwAPq1q2bJk2apCZNmqhP nz4yC/0XHzPLM3a85zJw4EB17txZLVq00IIFC7RgwQLdddddIcfINW3aNN12221q1aqVPvnkE/35 z3/Wiy8f0hg8AAAgAElEQVS+qAceeCBPXce6NrkhP/iPgcKsXLlSe/bs0aWXXhoY++STTwLHq1ev nqf9FJe33npLTzzxhBITE/XRRx+FuxwAQClCywWlzm233RZ47ZxTu3bttGnTJr3xxhuBdc457d69 W998843q168vyTfXtUePHlq9erUaNmyY776feOIJtWvXTu+//35grFatWrr88su1cuVKNW7cWEOH DtW1116rV155RZJ05ZVXKjU1VW+++WbIvrzM2z/WuZx77rmqWLGinHNq3bp1nvcHHyM3aI8ZM0aS dNVVV0mS/vrXv2rAgAGqVauW52tjZoqKijpm+M/19ddfKy4uTk2aNJEkzZgxQ1lZWZKkFi1aeNpH QXJycjRs2DAtXrxYAwcO1KxZsxQbG6tp06bpueee0+zZs5WTk6O5c+fq4YcfznO8hQsX6oMPPlCD Bg20adMmNW3aVA8//LCeeuopSVLfvn11ww03nFSNAIAzB+EZpc6ePXs0aNAgTZ48WVu3bg1MSzh6 akC9evUC4VCSGjVqJEnavHlzvuH50KFDWrBggV566aVA8JOkyy67TNHR0fr+++/VsGFDLVmyJBCc c/Xo0SNPeD6V53Is2dnZWrJkSZ75xrfccosef/xxLViwQDfeeGNg/FjXpmPHjsrMzPR8/Hnz5qly 5cp66qmnlJqaqvfee0/Jycn5bnvgwAE9+OCDysnJKXSfF1xwgR555BF9+umnuv3227VmzRr169dP U6dOVUxMjNauXas77rhDn332mapUqSLJN786ODzPnj1b/fv317x585SVlaXq1avrgw8+0P79+z2f GwAAwcISns2sgqQ3JV0gyUnq45xbEI5aUPr06tVLCxcu1MCBA9W4cWMlJiZq1KhRmjx5csh2FSpU CFnOvWktPT093/3u2bNH2dnZ6tu3r/r27Ruyzsy0adMm7dy5U9nZ2apatWrI+qOXT/W5HMvOnTt1 5MgRVatWLWQ8d3n37t0h48d7bY7l66+/Vu/evTVo0CBJ0llnnRU4dlZWVsi84oSEBI0ePdrzvqtX r65zzjlHixYt0ssvv6yYmBhJUnJysnr16hUIzhs3blTFihUD78vJyVGfPn304osvBt4zdepUtWvX 7oTOEQAAKXyd55GSPnfO3WRmUZL4eC94kp6ers8++0yjRo3SPffcExg/+qY4ydu0iWAVKlSQmWnI kCHq0qVLnvU1a9ZU5cqVFRkZqZSUlJB1Ry9LUmxsrDIyMkLG9uzZc0LnciyVK1dWdHR0njp27Ngh SapUqVLI+Kl8FOTWrVuVnJysDh06BMa6d+8eOM7IkSP18MMPn/D+27Rpo9TUVK1fvz4k+M6fPz9w 86Qkffnll/rHP/4RWJ43b562bdum6667LjDWvn37E64DAAApDOHZzMpLau+cu1OSnHNZkvYVdx0o nTIyMpSTkxPy6LP9+/frk08+UWRkZMi2Xufr5oqPj9cll1yin376SQMGDChwu+bNm+vjjz8OCbz5 3XR29tln57nhbtq0acd9LmXKlNHhw4cLrT0yMlItW7bU+PHjde+99wbGx48fr4iIiJAb+aTjvzaF mTdvnqKjo0OOkfv6o48+0hVXXBGy/fFO25B8nwrYpk0bRUdHS5LWrl2rjIyMwHST1atXa9OmTerY saO++eYbtW3bVlu2bFGDBg0C7wEA4FQIR+e5nqRUMxsjqZmk7yU96Jw7FIZaUMqUL19eF198sZ55 5hklJibKzDR8+HBVqFBBaWlpIdueSHf1+eef1+WXX66IiAjdeOONKleunDZu3KjPP/9cQ4cOVYMG DfTkk0/qhhtuUN++fdW9e3fNnj1bX375ZZ599ejRQ6NHj1b//v3VpUsXzZo1K2Q7r+fSqFEjffLJ J5o8ebJq1aqlWrVqqUaNGnmON2TIEF199dXq06ePbr31Vi1btkwDBw7UPffco5o1ax7XtZk9e7Yu v/xyzZo165jd2q+//lqtWrUKTI3ItWrVKr3zzjt5pqAc77SN3Ho6duwYWJ4zZ05IXVOnTtU111yj Q4cO6fvvv1fbtm3VokWLPNNQxo0bpzp16uT5YwIAAK/C8ai6KEktJI1yzrWQdFDSE2GoA6XU2LFj de6556pnz5566KGHdPPNN6tnz54h3dSCHhN3rI7rZZddpjlz5ig1NVU9e/ZUt27d9MILL6hOnTqB Obzdu3fXSy+9pE8//VQ9evTQ0qVL8w2DXbp00XPPPacJEybohhtu0KZNmzRy5MiQGrycS9++fXXV VVepT58+at26td544418z/HKK6/UBx98oO+++07dunXTv//9bz3yyCN6+eWX81yDY10b51zgv4Is XbpU9913n9577z3t2bNHDz30kB566CHdf//96tKli5o2bapbbrml0Ovt1S+//KKuXbsGllevXq1u 3boFltu3b68jR45o1KhRgUf5NWzYUIMHD9aTTz6p1157TSNGjNB5551HcAYAnJRi/3huM6suab5z rp5/uZ2kJ5xz1wVt43JvPJJ8HzbRqVOnYq0TOB7Lly9X06ZNlZSUFDL3FwAAlCxJSUlKSkoKLA8Z MuS4Pp672MOzJJnZHEl3OedWm9lgSbHOuceD1rtw1AWcKMIzAAClk5kdV3gO19M2/izpPTMrI2md pN7H2B4o8U7lTXgAAKBkCkvn+VjoPAMAAKA4HG/nORw3DAIAAAClEuEZAAAA8IjwDAAAAHhEeAYA AAA8IjwDAAAAHhGeAQAAAI8IzwAAAIBHhGcAAADAI8IzAAAA4BHhGQAAAPCI8AwAAAB4RHgGAAAA PCI8AwAAAB4RngEAAACPCM8AAACAR4RnAAAAwCPCMwAAAOAR4RkAAADwiPAMAAAAeER4BgAAADwi PAMAAAAeEZ4BAAAAjwjPAAAAgEeEZwAAAMAjwjMAAADgEeEZAAAA8IjwDAAAAHhEeAYAAAA8IjwD AAAAHhGeAQAAAI+iClphZi0luYLWO+cWF0lFAAAAQAllzuWfj80sSYWH585FVJPMzBVUFwAAAHCq mJmcc+Z5+5IYUgnPAAAAKA7HG56POefZzOLN7Gkze8O/3MDMrjuZIgEAAIDSyMsNg2MkZUpq61/e KmlokVUEAAAAlFBewnN959zf5QvQcs4dLNqSAAAAgJLJS3jOMLPY3AUzqy8po+hKAgAAAEqmAh9V F2SwpC8knW1mYyVdJqlXEdYEAAAAlEienrZhZpUltZFkkhY453YWaVE8bQMAAADF4HiftnHMzrOZ maSOktrJ99znaEmTTrhCAAAAoJQ6ZufZzF6VVF/S+/J1nm+R9Itzrm+RFUXnGQAAAMXglH9Iipn9 JKmxcy7HvxwhaaVz7jcnVWnhxyQ8AwAAoMid8g9JkbRWUp2g5Tr+MQAAAOCMUuCcZzP71P+ynKRV ZvatfHOeW0taVAy1AQAAACVKYTcM/qOQdcypAAAAwBnH06PqihtzngEAAFAcTvmcZzO71MwWmdkB MztiZjlmlnZyZQIAAAClj5cbBl+W9AdJayTFSPqTpFFFWRQAAABQEnkJz3LOrZEU6ZzLds6NkXRN 0ZYFAAAAlDzH/IRBSQfNrKykpWb2vKTt8n1YCgAAAHBG8dJ57unf7gFJhySdLenGoiwKAAAAKIl4 2gYAAADOWMf7tI3CPiRlWSHvc865psdVGQAAAFDKFTbn+Xr/126Svpa0S8x1BgAAwBmswPDsnEuW JDOrJmm8pMWS3pL0JXMqAAAAcCbyNOfZzCIkXSWpl6RW8oXp0c65dUVSFHOeAQAAUAxO+ScMSpJz Lke+R9TtkJQtqaKkCWb2wglVCQAAAJRCx+w8m9mD8j2ubpekNyVNcs4d8Xej1zjn6p/youg8AwAA oBicsqdtBKkk6Qbn3IbgQedcjpldX8B7AAAAgNMOz3kGAADAGatI5jwDAAAAIDwDAAAAnhGeAQAA AI8IzwAAAIBHhGcAAADAI8IzAAAA4BHhGQAAAPCI8AwAAAB4RHgGAAAAPCI8AwAAAB4RngEAAACP CM8AAACAR4RnAAAAwCPCMwAAAOAR4RkAAADwiPAMAAAAeER4BgAAADwiPAMAAAAeEZ4BAAAAjwjP AAAAgEeEZwAAAMAjwjMAAADgEeEZQB4bNmzQ+++/f8q2AwDgdEF4BpDH+vXrNXbs2FO2HQAApwvC M1BK9ejRQ61atdKFF16oN954Q5KUkJCgAQMG6KKLLtKll16qlJQUSVKvXr304IMP6rLLLlP9+vU1 ceJESZJzTo8++qiaNGmipk2bavz48ZKkJ554QnPnzlXz5s01cuRIbdiwQR06dFDLli3VsmVLzZ8/ P9/tcnJy9Oijj6p169Zq1qyZXn/99TBcGQAAio4558JzYLNISd9J2uycu/6odS5cdQGlxZ49e1Sx YkUdPnxYrVu31uzZs1W5cmV9+umn6tq1qx5//HElJibqqaeeUq9evXT48GGNGzdOq1atUrdu3bRm zRpNnDhRr732mr788kulpqbq4osv1sKFC/Xzzz/rxRdf1KeffipJOnz4sCIiIlS2bFmtWbNGf/jD H7Ro0SLNnj07ZLvXX39dqampeuqpp5SRkaF27drpww8/VN26dcN4pQAAKJiZyTlnXrePKspijuFB SSsllQtjDUCpNXLkSH388ceSpM2bN2vNmjUqU6aMunbtKklq2bKlpk+fLsn3i6F79+6SpEaNGmnH jh2SpK+//lp/+MMfZGaqWrWqOnbsqEWLFikxMTHkWJmZmXrggQe0dOlSRUZGas2aNZJ8netg06ZN 07JlyzRhwgRJUlpamtauXUt4BgCcNsISns3sbEldJA2V1D8cNQClWVJSkmbMmKEFCxYoJiZGnTt3 Vnp6uqKjowPbREREKCsrK7BcpkyZwOvc0Ov/aztk32Z5//j+17/+pRo1aujdd99Vdna2YmJiCqzt 5Zdf1pVXXnnC5wYAQEkWrjnP/5L0qKScMB0fKNXS0tJUsWJFxcTEaNWqVVqwYMEJ7ad9+/YaN26c cnJylJqaqjlz5qh169ZKSEjQ/v37Q45XvXp1SdI777yj7OxsSVK5cuVCtrv66qs1atSoQGhfvXq1 Dh06dKKnCQBAiVPsnWczu05SinNuiZl1Ku7jA6eDa665Rv/5z3/UuHFjnX/++br00kslhXaNzSzP 8tGve/Toofnz56tZs2YyM73wwguqWrWqKlWqpMjISF100UXq3bu3+vbtqxtvvFHvvPOOrrnmGiUk JEiSmjVrFrLdX/7yFyUnJ6tFixZyzqlq1aqaNGlScVwSAACKRbHfMGhmz0m6Q1KWpBhJiZImOud6 Bm3jBg0aFHhPp06d1KlTp2KtEwAAAKefpKQkJSUlBZaHDBlyXDcMhu1pG5JkZh0lPcLTNgAAABAO x/u0jZLwnGdSMgAAAEqFsHaeC0LnGQAAAMWhNHaeAQAAgFKB8AwAAAB4RHgGAAAAPCI8AyXY6NGj NWPGjDyfAggAAMKDGwaBEmr37t2qXbu2zEznnHOOhg8fruuuuy7fj88GAAAnhhsGgdPEP//5T+Xk 5OjgwYNauXKlfv/736t58+bKyeFT7QEACBfCM1AC7d+/XyNGjFB6enpgLDMzU61atVJEBP+zBQAg XPh/YaAEeumll/J0mCMjIzVw4MAwVQQAACTmPAMlzuHDh1WjRg3t27cvMBYZGalbbrlFY8eODWNl AACcfpjzDJRyr732mo4cORIyFh0drSFDhoSpIgAAkIvOM1CCZGZmqmbNmtq1a1dgLCIiQtddd50m T54cxsoAADg90XkGSrG333475CZBSSpbtqyGDh0apooAAEAwOs9ACZGVlaXatWtr+/btgTEz0+WX X67p06eHsTIAAE5fdJ6BUmrcuHE6cOBAyFhsbKyGDRsWpooAAMDR6DwDJUBOTo7OPfdcbdiwIWS8 bdu2mjdvXpiqAgDg9EfnGSiFJk+eHHKToCTFxcVp+PDhYaoIAADkh84zEGbOOTVq1Eg///xzyHjz 5s21ePHiMFUFAMCZgc4zUMp8+eWX2rx5c8hYfHw8XWcAAEogOs9AmF100UVaunRpyNhvfvMbrVy5 Umae/xAGAAAngM4zUIrMmTNHa9euDRlLSEjQsGHDCM4AAJRAdJ6BMGrbtq3mz58fMla3bl2tW7dO ERH8bQsAQFGj8wyUEosWLcozXSMhIUFDhw4lOAMAUELReQbC5IorrtCMGTNCxmrUqKFNmzYpMjIy TFUBAHBmofMMlALLli3TN998EzIWHx+vZ555huAMAEAJRucZCINu3brps88+U05OTmCscuXK2rJl i8qUKRPGygAAOLPQeQZKuNWrV2v69OkhwTk+Pl4DBw4kOAMAUMLReQaK2W233aYJEyYoOzs7MFa+ fHlt27ZNsbGxYawMAIAzD51noATbsGGDJk+eHBKcY2Nj9fjjjxOcAQAoBQjPQDF65plnQoKzJEVG RuqBBx4IU0UAAOB4EJ6BYrJt2zaNHTtWR44cCYzFxMSoX79+KleuXBgrAwAAXhGegWIybNiwkJsE JSkiIkL9+/cPU0UAAOB4EZ6BYrBr1y69+eabyszMDIyVLVtW9913nypWrBjGygAAwPEgPAPF4IUX Xsi36/z444+HqSIAAHAiCM9AEdu3b59efvllZWRkBMaio6PVs2dPVa1aNYyVAQCA40V4BorYv//9 7zxd58jISA0YMCBMFQEAgBPFh6QARejgwYOqUaOG9u/fHxiLiorSbbfdpnfffTeMlQEAAIkPSQFK lP/85z95nuscFRWlIUOGhKkiAABwMug8A0UkIyNDNWrU0J49ewJjERER6t69uyZOnBjGygAAQC46 z0AJMWbMmJBH00m+x9M9++yzYaoIAACcLDrPQBHIyspSrVq1lJKSEhgzM1199dWaOnVqGCsDAADB 6DwDJcDYsWN18ODBkLGYmBg999xzYaoIAACcCnSegVMsJydH55xzjjZv3hwy3qFDB82ePTtMVQEA gPzQeQbCbOLEidq7d2/IWFxcnIYNGxamigAAwKlC5xk4hZxzatiwodauXRsy3qpVKy1atChMVQEA gILQeQbC6PPPP9f27dtDxuLj4zV8+PAwVQQAAE4lOs/AKeKcU9OmTbV8+fKQ8caNG2v58uUy8/xH LQAAKCZ0noEwSUpK0vr160PGcrvOBGcAAE4PdJ6BU6RNmzb69ttvQ8bq16+vNWvWEJ4BACih6DwD YbBgwYI80zUSEhI0dOhQgjMAAKcROs/AKdC5c2clJSWFjNWqVUsbNmxQZGRkeIoCAADHROcZKGY/ /PCDFi5cGDKWkJCgv/3tbwRnAABOM3SegZPUtWtXTZ06VcE/s1WqVNGWLVsUHR0dxsoAAMCx0HkG itGqVas0c+bMkOAcHx+vwYMHE5wBADgN0XkGTsLNN9+sSZMmKTs7OzBWoUIFbdu2TTExMWGsDAAA eEHnGSgm69ev15QpU0KCc1xcnJ588kmCMwAApynCM3CCBg8erKysrJCxyMhI9e3bN0wVAQCAokZ4 Bk7Ali1bNH78+JDwHBsbq4cffljx8fFhrAwAABQlwjNwAp577jnl5OSEjEVERKhfv35hqggAABQH wjNwnFJTUzVmzBhlZmYGxmJiYtS3b1+VL18+jJUBAICiRngGjtPzzz+fp+tsZnrsscfCVBEAACgu hGfgOOzdu1ejRo1SRkZGYKxMmTLq06ePKleuHMbKAABAcSA8A8dhxIgR+c51fvLJJ8NUEQAAKE58 SArg0YEDB1SjRg0dOHAgMBYVFaXbb79dY8aMCWNlAADgRPEhKUARGTVqVJ6uc1RUlAYNGhSmigAA QHGj8wx4kJ6erho1amjv3r2BscjISN1www0aP358GCsDAAAng84zUARGjx6tI0eOhIxFR0fr2Wef DVNFAAAgHOg8A8dw5MgR1axZUzt37gyMmZm6dOmiKVOmhLEyAABwsug8A6fYu+++q8OHD4eMxcTE aOjQoWGqCAAAhAudZ6AQ2dnZqlOnjrZu3Roy3rlzZ82cOTNMVQEAgFOFzjNwCn344YdKS0sLGYuL i9OwYcPCVBEAAAgnOs9AAXJycnTeeedp/fr1IeNt2rTRggULwlQVAAA4leg8A6fIlClTlJqaGjIW Hx+v4cOHh6kiAAAQbnSegXw453TBBRdo1apVIeNNmjTR0qVLZeb5D1QAAFCC0XkGToEZM2Zo48aN IWPx8fH6+9//TnAGAOAMRucZyEfLli21ePHikLEGDRro559/JjwDAHAaofMMnKR58+bpp59+ChlL SEjQc889R3AGAOAMR+cZOEqHDh00d+7ckLHatWsrOTlZERH8vQkAwOmEzjNwEr7//nt99913IWMJ CQkaOnQowRkAANB5BoJdffXVmj59uoJ//qpVq6bNmzcrKioqjJUBAICiQOcZOEErVqzQ3LlzQ4Jz fHy8hgwZQnAGAACS6DwDATfccIMmT56snJycwFilSpW0detWlS1bNoyVAQCAokLnGTgB69at09Sp U0OCc1xcnAYMGEBwBgAAAYRnQNKgQYN05MiRkLGoqCjde++9Yaro1Pv+++/14IMPnvR+/vvf/+rP f/7zCb8/ISHhhN43efLkkE98HDRokGbOnClJGjFihA4fPnzc+wiWmpqqNm3aqGXLlpo3b55WrVql u++++7iuW1JSksqXL6/mzZurefPmuuqqqzy9L9jbb7+tbdu2BZbr1q2r3bt359nu5ptv1rZt29S1 a1elpaUd93FOVq9evTRx4sST3s9ll10myXftrr/++pPeHwAUNSZy4oy3adMmTZw4UdnZ2YGx2NhY Pfroo4qLiwtjZadWy5Yt1bJly3CXccLPyp40aZKuv/56NWrUSJI0ZMiQwLqRI0fqjjvuUGzs/7d3 51FVVXscwL+bK8oQiiNiapgaOQGiAoomJFImpjmlLxUrs0l9avrQciWYqJWVpq8srcAyh3DAISsc wClTUcwh55kUFbSQSYbf++PCiQsXufqUe4HvZy3Wumefffb57cNZ+mPfvc+xvas2Ctu8eTPc3Nyw cOFCrazgc0nXLTc3FzqdzqCsa9euWLt2rWmdMiIiIgKtW7eGs7MzgJKv1w8//AAA2LBhg9H9OTk5 //dc/by8vBKfMnO/nnm+c+fO+9IOEVFZ4cgzVXrTp083SJwBwMrKCmPGjDFTRKU7d+4c2rRpo23P nj1bSyb9/PwwadIkeHt7w9XVFTt27ABgOLJ369YtvPjii3Bzc4O7uztWr14NAFi6dCnc3NzQpk0b TJo0SWv/m2++gaurK7y9vbFr1y6t/Nq1a+jfvz+8vLzg5eVlsK80sbGx8PPzw4ABA9CiRQsMGTJE 2zdp0iS0atUK7u7umDhxIn799VesW7cOEydOhKenJ86cOaONfM6bNw9//vkn/P390a1bNwCGo9tR UVF48cUXDdpo27Ytzpw5o9VJSEhASEgIoqOj4enpiczMTKNtAPoR19deew0+Pj4ICQkp1i9j6zW+ ++47eHt7o23btnjttdeQl5eH3NxcDB8+HG3atIGbmxvmzJmDlStXYt++fXjhhRe0OApkZGSgR48e +Oqrr5CSkoI+ffrA3d0dHTt2xKFDhwAAoaGhGDp0KDp37oxhw4YhMjISvXv3hr+/Px577DFMmzbt jjEVXLsJEybAw8MDv/76K1xcXBASEgI3Nzd4e3vj9OnTWhvbtm2Dr68vmjZtqo1CBwcHIzo6Wqvz wgsvYO3atThy5Ih2Pnd3d60dY99E7N27F56enjh79myxfUREZiciZfoDoBGArQCOADgMYIyROkJU Fq5cuSI2NjYCQPuxsbGRyZMnmzu0Ozp79qy0bt1a2549e7aEhYWJiIifn59MmDBBRER+/PFHCQgI EBGRrVu3SlBQkIiI/Oc//5Fx48Zpx9+4cUMSExOlcePGcv36dcnJyZEnn3xS1qxZI3/++adWfvv2 bfH19ZXRo0eLiMjgwYNlx44dIiJy/vx5adGihYiI7N27V0aMGGE09oceekiLp0aNGpKYmCh5eXnS sWNH2bFjh1y/fl1cXV21+n/99ZeIiAwfPlxWrlyplRfednFxkeTk5GLnEBGJioqS4cOHG22jsIiI CK1fd2ojODhYevXqJXl5ecXaKOiTh4eHeHh4yIwZM+To0aPSq1cvycnJERGRN954QxYvXizx8fHS vXv3Yv308/OT+Ph4rdzFxUXOnTsnAQEB8u2334qIyKhRo2TatGkiIrJlyxbx8PAQEZGpU6dK+/bt JTMzU0REvvnmG3F2dpaUlBTJyMiQ1q1by759+4rF9Prrr8vixYtFREQpJT/88IPB+WfMmCEiIosX L9buoeDgYBk4cKCIiBw9elSaNWsmIiJxcXHSp08fERG5efOmNGnSRHJycmTUqFGyZMkSERHJzs6W jIwMg+tccH/u3LlT2rVrJxcvXjT6eyIiut/y806Tc1lzTNvIBjBORBKUUg8BiFdKxYiI8YmIRA/Q +++/X2ykUCmFt956y0wR3bvC/ejbty8AwNPTE+fOnStWd/PmzVi+fLm27ejoiLi4OPj7+6N27doA 9COG27ZtA6AfzS4of/7553HixAkAwKZNmwzmEKempiI9PR3t27dH+/btS43Zy8sLDRo0AAB4eHjg /Pnz8PHxgY2NDV5++WUEBQUhKCjIaB/vVUltyD9/vN+RUgoDBgwocdpCly5dsG7dOm17/vz5iI+P 165HRkYGnJyc0KtXL5w5cwZjxoxBz549DeZHF45DRNC7d2+EhIRg8ODBAPRTHVatWgUA8Pf3R3Jy MlJTU6GUwrPPPmuwyDUwMBA1a9YEoL8vduzYAZ1OVyym+vXrAwB0Oh369etn0KeC8w4aNAjjxo3T rkOfPn0AAC1atEBSUhIA/Rs633jjDVy/fh1RUVHo378/dDodOnXqhPDwcFy6dAl9+/ZFs2bNil27 P7LIqg4AAB7VSURBVP74A6+++ipiYmK0eIiILE2ZT9sQkSsikpD/+RaAPwA0KOs4iFJSUvDFF18g KytLK6tatSpeeeUVLVG0VFWqVDF4MkhGRoZBMleQPOl0OuTk5Bhtw9gfDUWTtpKOKziXiOC3337D gQMHcODAAVy8ePGu5okXTvJ0Oh2ys7Oh0+mwZ88e9O/fH+vXr8fTTz9tEKMpCtcrupCwpDaKlt+p jbudCx8cHKxdo2PHjuHdd9+Fo6Mjfv/9d/j5+WHBggUYMWKE0XMrpdC5c2ds3LjRoM2Sfj+FYyva p8K/O2MxAYCNjc0dr3PhfVWrVjUaz7Bhw/Dtt98iIiICL730EgB9Ar5u3TrY2trimWeewdatW4u1 7ezsDFtbW+zfv7/E8xMRmZtZ5zwrpVwAtAXwmznjoMrp448/NkhAAf1c58mTJ5spItM5OTnh6tWr SElJQVZWFtavX39Xx3fv3h3//e9/te2bN2/Cy8sLcXFxSE5ORm5uLpYtWwY/Pz94e3sjLi4OKSkp yM7O1haqAfpRzU8//VTbTkhI+L/7lpaWhps3b6JHjx74+OOPcfDgQQCAg4NDiU+VKLrPyckJx44d Q15eHlavXq0lfHdqo2gyWlIbd6tbt26IiorCtWvXAOj/aLtw4QKSk5ORk5ODvn374r333sOBAwdK jHHatGmoWbMm3nzzTQD60e0lS5YA0M8dr1u3LhwcHIr1QUQQExODGzduICMjA9HR0ejcuXOJMZWk 4FuK5cuXo1OnTqX2efjw4ZgzZw6UUnj88ccBAGfPnkWTJk0wevRo9O7dW5unXZijoyPWr1+PyZMn Iy4urtTzEBGZg9mS5/wpG1EA/p0/Ak1UZlJTUzFnzhyDBVnW1tYYMmRIufi62NraGu+++y68vLwQ GBiIli1blli36CgmAEyZMgU3btxAmzZt4OHhgdjYWNSvXx+zZs2Cv78/PDw80L59e/Tq1Qv169dH aGgoOnbsiM6dO6NVq1Zae59++in27dsHd3d3tGrVCl9++SUAYN++fXjllVdMjqfwdmpqKnr16gV3 d3d06dIFn3zyCQD9lIEPP/wQ7dq1M1jsBwAjR47E008/rS0YnDVrFoKCguDr66tNCymtDaWUQTwl tWEs7pLaAPRTGqZPn47AwEC4u7sjMDAQV65cQWJiIvz9/dG2bVsMHToUM2fOBPDPgsSiCwbnzp2L jIwMTJo0CaGhoYiPj4e7uzvefvttREZGGj2/UgpeXl7o168f3N3d0b9/f3h6epYYU0l9u3HjBtzd 3TFv3jzt91G0buHP9erVQ8uWLbVFlgCwYsUKtG7dGm3btsWRI0cwbNgwo23Uq1cP69evx5tvvom9 e/cavc5EROZkljcMKqWsAawHsFFE5hjZL1OnTtW2/fz84OfnV3YBUoU3Y8YMTJ8+3eDreBsbGxw/ fhyNGzc2Y2RE909ERATi4+Mxb968e26jSZMmiI+PR61atUw+Jj09HW5ubjhw4AAcHBzu+dxERA9C bGwsYmNjte2wsLC7esNgmS8YVPphhq8AHDWWOBcIDQ0ts5iocsnIyMAHH3xgkDjrdDo899xzTJyp QjE2En4vbdyNTZs2YcSIERg/fjwTZyKySEUHZQu/N8AUZT7yrJTqDGAbgN+hfzQYAEwWkZ8K1RFz jIhT5TB37ly8/fbbSE9P18psbGzw+++/o3nz5maMjIiIiMpa/oJ5k0cKzDJtozRMnulBuX37Nho0 aIDk5GStzMrKCkFBQQYvdiAiIqLK4W6TZ75hkCqVyMhIg0VYgP5xaeHh4WaKiIiIiMoTjjxTpZGT k4PGjRvj8uXLWplSCt26dUNMTIwZIyMiIiJz4cgzUQmWL1+O1NRUgzJbW1vtEWFEREREpeHIM1UK eXl5ePTRR3H+/HmDcl9fX+zYscNMUREREZG5ceSZyIjo6GiDRYKA/jXGHHUmIiKiu8GRZ6rwRAQt WrTA8ePHDcrbtm2L/fv3mykqIiIisgQceSYq4pdffsGlS5cMyuzt7TFr1iwzRURERETlFUeeqcLz 8PDAwYMHDcoef/xxHD169P9++xoRERGVbxx5Jipk27ZtOHXqlEGZvb09Zs6cycSZiIiI7hpHnqlC 8/X1xa5duwzKXFxccPr0aVhZ8W9HIiKiyo4jz0T59u7di4SEBIMye3t7hIeHM3EmIiKie8KRZ6qw AgICsHnzZoOyBg0a4MKFC9DpdGaKioiIiCwJR56JABw6dKjYdA17e3uEhYUxcSYiIqJ7xpFnqpCe ffZZbNiwAXl5eVpZnTp1kJiYiKpVq5oxMiIiIrIkHHmmSu/EiROIiYkxSJzt7e3x7rvvMnEmIiKi /wtHnqnCGTRoEKKiopCbm6uV1ahRA5cvX4atra0ZIyMiIiJLw5FnqtTOnz+P6Ohog8TZ1tYWISEh TJyJiIjo/8bkmSqU9957zyBxBgCdTodRo0aZKSIiIiKqSJg8U4Vx+fJlLFmyBNnZ2VqZjY0Nxo4d CwcHBzNGRkRERBUFk2cql4zNiZ85c6bBIkEAsLKywvjx48sqLCIiIqrgmDxTuRQeHo6xY8ciKSkJ AJCcnIxFixbh9u3bWp1q1arhtddeQ82aNc0VJhEREVUwVcwdANG9uHDhAr7++mt88cUXGDJkCAAY HXUOCQkxR3hERERUQTF5pnIpNTUVubm5yM3NRWRkJEQEOTk52n5ra2sMGzYM9erVM2OUREREVNEw eaZy6e+//9Y+F14gWECn02HKlCllGRIRERFVApzzTOVSWlpaqXVefvllxMfHl0E0REREVFkweaZy 6datW3fcn5mZiZiYGHTp0gWdO3dmEk1ERET3BZNnKpfS09NLrSMiyMvLw5UrV+Dk5FQGUREREVFF x+SZyiVTkmc7Ozt06NAB+/fvR8OGDcsgKiIiIqromDxTuZSZmXnH/XZ2dujXrx+2bNmC6tWrl1FU REREVNExeaZy6U7Js62tLSZPnozIyEhYW1uXYVRERERU0fFRdVQuZWVlGS23s7PDokWLMHjw4DKO iIiIiCoDJs9ULhV+DTcAKKXg4OCAH3/8Eb6+vmaKioiIiCo6Js9U7hR9KYq1tTXq1q2L2NhYNG/e 3ExRERERUWXAOc9U7qSlpaFKFf3ffTY2NmjZsiUOHjzIxJmIiIgeOCbPVO4UPKbOzs4OAQEB2L17 N+rUqWPmqIiIiKgyYPJM5U5aWhpu376NkSNHIjo6GjY2NuYOiYiIiCoJJSLmjqEYpZRYYlxkGY4c OYKdO3di5MiR5g6FiIiIyjmlFEREmVzfEpNUJs90JyICpUy+x4mIiIhKdLfJM6dtULnDxJmIiIjM hckzEREREZGJ+JxnsngbNmzDp5/+gqysKqhWLQdjxgSiZ88nzB0WERERVUJMnsmibdiwDf/+9884 fTpcKzt9+h0AYAJNREREZY7TNsiiffrpLwaJMwCcPh2OefNizBQRERERVWZMnsmiZWUZ/3IkM1NX xpEQERERMXkmC1etWo7Rchub3DKOhIiIiIjJM1m4MWMC0bTpOwZlTZu+jdGju5spIiIiIqrM+JIU sngbNmzDvHkxyMzUwcYmF6NHd+diQSIiIrov+IZBIiIiIiIT8Q2DREREREQPCJNnIiIiIiITMXkm IiIiIjIRk2ciIiIiIhMxeSYiIiIiMhGTZyIiIiIiEzF5JiIiIiIyEZNnIiIiIiITMXkmIiIiIjIR k2ciIiIiIhMxeSYiIiIiMhGTZyIiIiIiEzF5JiIiIiIyEZNnIiIiIiITMXkmIiIiIjIRk2ciIiIi IhMxeSYiIiIiMhGTZyIiIiIiEzF5JiIiIiIyEZNnIiIiIiITMXkmIiIiIjIRk2ciIiIiIhMxeSYi IiIiMhGTZyIiIgt17uY5WIVZ4ceTP5o1jlu3b8EqzAqLDy4usc7VtKsIjQ3F+ZvnH0gMexL3ICw2 zKS6fhF+GPDDgAcSB5Vu/p75sAqruClmxe0ZERERlZmraVcxLW4azv/1AJPnONOS5wVBCzCr26wH EgdRFXMHQERERA9Wbl4u8iQP1jrrB34uEXng5yjN43UeN3cIFV5GdgZsrW3NHYZZcOSZiIjoAdl2 fhv8I/3hMNMBjrMc4R/pj4QrCdr+hCsJ6La4G+xn2KPW+7UwZNUQXE27esc2c/NyERobisafNIbN dBu0/qw1lh5aalBn+Jrh6LCwA9YcW4NWn7WCbbgt9iTuAQBEH4tG+y/bwzbcFs4fOSMkJgQ5eTkG x688uhKPzXsMduF26BrRFceuH7tjTOdunoPb524AAP9If1iFWRl8bZ+SkYKR60ai/uz6sA23he/X vlo8APDmhjdR78N6uJZ2zSAGqzArbDqzCREJERizcQwAaG0/GflkifEUnbYRGhuKuh/WRcKVBPgs 8oH9DHt4fuGJHRd23LFfADBp0yS4fe4Gh5kOaPRJIwxZNQRJt5K0/bsv7UaVaVXwzYFvtLK/Mv9C o08aYejqoVrZ4auH0fP7nqg+szqqz6yOgT8MNGgnOzcbE36ZgEfmPAKb6TZ4+OOH0Xd5X2TnZt8x vvtxj11Pv47gNcGo80Ed2M+wh3+kP+L/jDeo4zLHBRN+mYD34t5Dw48bosasGgCArJwsjPpxFBxn OaL2B7Ux/ufxxWK+175ZKibPRERED0DsuVh0W9wN1XTVsLjPYqwYsAJPNH4CiX8nAgCupV2DX4Qf MnMysbTfUszrMQ9x5+PQ/dvud0wq3t36LmZsn4HX2r+GdYPXwbeRL15Y9QKWHV6m1VFK4dzNcwjZ FIJ3uryDn4b8BBdHF6w4sgL9VvSDT0MfrBu8DlO7TsWX+7/E5E2TtWP3X96P56OeR1vntlj9/Gr0 eqwXBv4w8I59beDQAEv6LgEAfNbzM+wesRu7R+wGoE+uAhYHYMvZLZgdOBtrnl+DunZ1EbA4QEse Pwz8EDVsauDV9a8C0E8BeX3D63i9/esIeDQAQY8F4a2ObwGA1vZnPT8rMR6lFBSUQVl6djqC1wTj 9favY+XAlahWpRr6Lu+LjOyMO/YtKS0JkzpPwoZ/bcDcp+fizI0zeHLxk9oIu09DH/zH9z8Y9/M4 XPzrIgBgzE/6RH9+j/kAgFMpp+D7tS9u597Gkr5LENEnAkeuHUGvpb2088zcMRPfH/oe0/2nY9Ow TZjz1Bw42jgiV3JLjO1+3WN9lvVBzOkYfBT4EZb3X448yYN/pD9Op5w2uKbfH/oe2y9sx4KgBVgx YAUA/R8XXx34ClO7TsX3fb/H+b/O46NfP4JS/1z/e+mbRRMRi/vRh0VERFR++SzykQ5fdihxf0hM iNScVVNSs1K1st8u/SYqVMnSQ0tFROTsjbOiQpVsOLFBRESS05PFLtxOpsVOM2jrmSXPiOs8V207 eHWwqFAlB68c1Mry8vKk8SeN5aU1Lxkc+/X+r8V2uq2kpKeIiMiAFQOk1X9bGdQJ3xYuKlRJZEJk if05lHRIVKiSuHNxBuWL4hdJ1feqyqnkU1pZTm6ONJ3bVCb+MlEr23lhp+jCdPLtwW/luWXPSbNP m0n67XRt/7zf5okKVSWev7Cu33SVASsGaNtTt04VFapk69mtWlnC5QRRoUp+PvWzSW0WxH3pr0ui QpVsO7dNK7+dc1vcPneTgMUBsuaPNaJClfx08idt/5BVQ+Tx+Y9Ldm62VnYy+aTownTy44kfRUQk 6Psgeevnt0yOReT+3GMbT24s1p+022lS94O68uq6V7WyRz55RBp81ECycrK0sutp18V2uq18sOMD rSwvL09c57mKVZiVVnYvfStL+XmnyXkqR56JiIjus7TbadiTuAfB7sEl1tmTuAeBTQPxUNWHtDKv h73g4uiCnRd2Gj3m8NXDyMjOwIBWhk+SGNhyIE4kn0ByerJW1rB6Q7g5uWnbJ5JP4OJfFzGg1QDk 5OVoP/5N/JGZk4nDVw9rcT3r+qxB+889/pzpnS9i09lNaOfcDi6OLto5BYInHnkC+/7cp9Xr1KgT xnccjxFrR2DdiXWI6B1xX+fUVtVVhZ+Ln7bdom4LAMClvy/d8biNJzei01ed4DjLEdbvWaPRJ40A ACdTTmp1rHXWWNxnMbad34ZBKwfhFc9X8FSzp7T9m85sQh/XPgCgXQMXRxe4OLpg7597AQAeTh6I SIjAhzs/xO9Jv5c6d/x+3WN7EvfA6SEndHmki1bHztoOQY8FGUxrUUqhW5NuqKqrqpUdunoImTmZ 6P14b4N6vV17G8R/t32zdFwwSEREdJ/dyLwBEYGzg3OJda7cuoI29doUK69nXw8pmSlGj7mcehkA 4GTvZFDu9JB+OyUjBbXtahuUFbiefh0A8MySZ4q1q5TCxb/1Uw6S0pJQz75esZju1fX069h9aTes 3yu+WLFZrWYG24NaD8LsXbPhXt8dvo197/mcxjhUczDYLkgCM3MySzxmb+JePLvsWfRr0Q9vd3lb uw4+i3yKHefm5IYWdVrg0NVDeKPDGwb7rqdfx/s738f7O98vdo6C5H3KE1Ngpazw2b7PELIpBA9X fxgTO03EGO8xRmO7X/fY5dTLqGtX13idDMP7sOh9d+XWFa1u0WMLu9u+WTomz0RERPdZTZuasFJW +DP1zxLrODs4IyktqVh5UloSOjToUOIxgH5OcE3bmv8ckz93uJZtrRLPV7BvYa+FaOvcttj+Jo5N AAD1H6pvsJCt4Hz3qrZtbbRv0B4LghYU21dNV037nJOXg5HrRqKNUxscvnoYC+MX4pV2r9zzee+H 1cdWw8neCcv6/zOfvKTnWM/ZPQfHk4+jRZ0WGL1xNOKGx2nzfmvb1kbfFn0xwnNEsePq2NUBAFSr Ug1h/mEI8w/DqZRTWLBvAcb+NBautV0NRrEL3K97zNnB2ejvNyktSftDrEDhecyA/l4B9PeHo42j Vl60vbvtm6XjtA0iIqL7zL6qPbwbet/xpSLeD3vj59M/49btW1rZ3sS9OH/zPDo37mz0mNb1WsPO 2g4rjqwwKF9xdAVc67gaJDtFF8y51nHFw9UfxtmbZ+Hp7FnspyAZ79CgA9aeWGtw7Ko/VpXa55JG crs16YZTKafQqHqjYudsVa+VVm/G9hk4mXISawetRYhvCCbETDBIVAvaz8rJKjWWoknevcrIzkAV K8NxxiWHlhSrd/z6cUzZOgXhT4Zjef/l2JO4B5/s/kTb3+3Rbjh89bDR6964RuNi7TWr1Qwfdv8Q 1apUwx/X/zAa2/26x3wa+uBq2lVsP79dq5OenY4NJzagcyPj92GBNvXawKaKDdYcW6OV5Ukeoo9H l/g7MKVvlo4jz0RERA/ArG6zEPBtAHos6YGRniNhZ22HXy/9ig4NOqDnYz0xvuN4fL7vczz13VMI 8Q1BalYqJm2eBDcnN/Rr2c9om7Vsa2Gsz1hM3z4dVayqoF2Ddlj1xypsPLnRYHQUAASG80qtlBU+ CvwIQ1cPxd9Zf+PpZk+jqq4qztw4g+jj0YgaEAVba1uE+IbAe5E3Bv4wEC+1fQmHrx7G1wlfl9rf xjUaw9baFhEJEXCo6gBrnTXaN2iPYe7DsCB+Afwi/TCh4wQ0qdkEyenJ2JO4B84OzhjrMxYHLh9A +PZwzO8xH484PoKpXadi3Yl1eGntS9g8bDMAoEUd/Rzlub/Nhb+LP6pXqw7XOq5GYxGRYv2/F4FN AzH3t7kY99M4BD0WhF0XdxVLnnPzchG8Jhiezp4Y33E8ACDMLwxTtkxBz+Y94VrHFaFdQ+G1yAs9 v++JFz1eRB27Okj8OxGbzm7CcPfh6OrSFc8tfw7tndvDo74HbK1tEXU0Crl5uXjikSdKjO9+3GOB TQPRqVEnPB/1PGYFzEIt21qYvWs2snKzMNF3osE1Laq2XW2MbDcSU2OnoopVFbSs2xIL9y9EWnaa Qf176Zsl48gzERHRA9DlkS6IGRqD9Ox0DFk9BINWDsL2C9vRqIZ+wVkduzrYGrwVNlVsMHjlYIza OApdH+mKmKExBqOdRUfwpvlPw+TOk/H5vs/Ra2kv7LiwA0v6LsHAVgMNjik68gwAA1sNRPSgaCRc ScDAHwai34p+WLBvAdo5t9NGdts1aIdl/ZfhwJUDeG75c1h7fC2W919ean9tqthgYa+FiL8cD79I P3gv8gag/8p+a/BWdH+0O6bGTsVT3z2FsT+Pxekbp+H9sDeyc7MxPHo4nmzypDZNo2AB3o4LO/Df Pf/VrufEThMx97e58PnKB69veL3EWIr2X8H49ShNj+Y98H7A+1j5x0r0XtYb2y9sx/p/rTeo88HO D3Dk2hFE9I7Qyib6ToRHfQ8Mjx6OPMlD89rNsfvl3bCztsOr61/FM0ueQWhcKGx0NmheuzkAwLeR L9YcX4MXVr2APsv64MCVA1g5cCU8nT1LjO9+3WNrBq1B96bdMfansRj4w0AopbBl2BY8WvNRg2tq zAfdP8BLHi9hWtw0/Gvlv9DQoSHG+4w3qH8vfbNkyhJXPCqlxBLjIiIiIqKKRSkFETH5ryuOPBMR ERERmcgsybNS6mml1DGl1EmlVIg5YiAiIiIiultlnjwrpXQA5gN4GkBLAIOVUi3KOg4qf2JjY80d Alkg3hdkDO8LMob3Bd0P5hh59gJwSkTOiUg2gGUAepdyDBH/0SOjeF+QMbwvyBjeF3Q/mCN5fhjA xULbl/LLiIiIiIgsmjmSZz5Gg4iIiIjKpTJ/VJ1SygdAqIg8nb89GUCeiLxfqA4TbCIiIiIqE3fz qDpzJM9VABwH0A3AnwD2ABgsIuXzHY1EREREVGmU+eu5RSRHKTUKwM8AdAC+YuJMREREROWBRb5h kIiIiIjIElncGwb5AhUqSinVSCm1VSl1RCl1WCk1xtwxkWVQSumUUgeUUuvMHQtZBqWUo1IqSin1 h1LqaP46G6rklFKT8/8POaSU+l4pVc3cMVHZU0p9rZRKUkodKlRWSykVo5Q6oZT6RSnlWFo7FpU8 8wUqVIJsAONEpBUAHwBv8r6gfP8GcBR8ig/9Yy6AH0WkBQA3AJwWWMkppVwAvALAU0TaQD9ldJA5 YyKz+Qb6HLOwSQBiROQxAJvzt+/IopJn8AUqZISIXBGRhPzPt6D/z7CBeaMic1NKNQTwDIBFAExe JU0Vl1KqBoAuIvI1oF9jIyJ/mTksMr+/oR+Esct/aIEdgETzhkTmICLbAdwoUvwsgMj8z5EA+pTW jqUlz3yBCt1R/ghCWwC/mTcSsgCfAJgIIM/cgZDFaALgmlLqG6XUfqXUQqWUnbmDIvMSkRQAHwG4 AP1Tvm6KyCbzRkUWxElEkvI/JwFwKu0AS0ue+dUrlUgp9RCAKAD/zh+BpkpKKRUE4KqIHABHnekf VQB4AvhMRDwBpMGEr2CpYlNKNQUwFoAL9N9aPqSUesGsQZFFEv1TNErNRS0teU4E0KjQdiPoR5+p klNKWQNYCeA7EVlj7njI7DoBeFYpdRbAUgBPKqUWmzkmMr9LAC6JyN787Sjok2mq3NoD2CUiySKS A2AV9P+GEAFAklKqPgAopZwBXC3tAEtLnvcBaK6UclFKVQXwPIC1Zo6JzEwppQB8BeCoiMwxdzxk fiLytog0EpEm0C/82SIiw8wdF5mXiFwBcFEp9Vh+UQCAI2YMiSzDMQA+Sinb/P9PAqBfaEwE6PPM 4PzPwQBKHaAr85ek3AlfoEIl8AUwBMDvSqkD+WWTReQnM8ZEloVTvqjAaABL8gdgTgN40czxkJmJ yMH8b6b2Qb9GYj+AL80bFZmDUmopgK4A6iilLgJ4F8AsACuUUi8DOAdgYKnt8CUpRERERESmsbRp G0REREREFovJMxERERGRiZg8ExERERGZiMkzEREREZGJmDwTEREREZmIyTMRERERkYmYPBMRWbj8 F0cdKqWOn1Jq3V22G6uUavf/RUdEVLkweSYiqrwEfMEMEdFdYfJMRGRBlFIdlFIHlVLVlFL2SqnD AOwL7XdRSm1TSsXn/3QsdHh1pdR6pdQxpdTn+a8ihlIqUCm1K7/+CqWUfdHzEhGRaSzq9dxERJWd iOxVSq0FMB2ALYBvAdwqVCUJQHcRyVJKNQfwPYAO+fu8ALQAcAHATwD6KqXiALwDoJuIZCilQgCM B/BemXSIiKiCYfJMRGR5pgHYByADwGgAjxTaVxXAfKWUO4BcAM0L7dsjIucAQCm1FEBnAJkAWgLY lT8QXRXArgccPxFRhcXkmYjI8tSBfqqGDvrR58LGAbgsIkOVUjrok+MChecvq/xtBSBGRP71AOMl Iqo0OOeZiMjyfAFgCvRTMt4vsq86gCv5n4dBn2AX8MqfE20FYCCA7QB2A/BVSjUFgPx51IVHq4mI 6C5w5JmIyIIopYYByBKRZflJ8C4A/vhnVPkzACvz6/2Ef+ZDC4C9AOYDaAZgi4iszm9zOIClSqlq +XXfAXCyDLpDRFThKBE+pYiIiIiIyBSctkFEREREZCImz0REREREJmLyTERERERkIibPREREREQm YvJMRERERGQiJs9ERERERCZi8kxEREREZCImz0REREREJvofHWbt2xvCuI0AAAAASUVORK5CYII= )

文本属性和布局

我们可以通过下列关键词,在文本函数中设置文本的属性:

关键词
alpha float
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key 'pad' which is a pad in points
clip_box a matplotlib.transform.Bbox instance
clip_on [True False]
clip_path a Path instance and a Transform instance, a Patch
color any matplotlib color
family [ 'serif' , 'sans-serif' , 'cursive' , 'fantasy' , 'monospace' ]
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [ 'center' , 'right' , 'left' ]
label any string
linespacing float
multialignment ['left' , 'right' , 'center' ]
name or fontname string e.g., ['Sans' , 'Courier' , 'Helvetica' ...]
picker [None,float,boolean,callable]
position (x,y)
rotation [ angle in degrees 'vertical' , 'horizontal'
size or fontsize [ size in points , relative size, e.g., 'smaller', 'x-large' ]
style or fontstyle [ 'normal' , 'italic' , 'oblique']
text string or anything printable with '%s' conversion
transform a matplotlib.transform transformation instance
variant [ 'normal' , 'small-caps' ]
verticalalignment or va [ 'center' , 'top' , 'bottom' , 'baseline' ]
visible [True , False]
weight or fontweight [ 'normal' , 'bold' , 'heavy' , 'light' , 'ultrabold' , 'ultralight']
x float
y float
zorder any number

其中 va, ha, multialignment 可以用来控制布局。

  • horizontalalignment or ha x 位置参数表示的位置
  • verticalalignment or vay 位置参数表示的位置
  • multialignment:多行位置控制

In [3]:

import matplotlib.pyplot as plt
import matplotlib.patches as patches

# build a rectangle in axes coords
left, width = .25, .5
bottom, height = .25, .5
right = left + width
top = bottom + height

fig = plt.figure(figsize=(10,7))
ax = fig.add_axes([0,0,1,1])

# axes coordinates are 0,0 is bottom left and 1,1 is upper right
p = patches.Rectangle(
    (left, bottom), width, height,
    fill=False, transform=ax.transAxes, clip_on=False
    )

ax.add_patch(p)

ax.text(left, bottom, 'left top',
        horizontalalignment='left',
        verticalalignment='top',
        transform=ax.transAxes,
        size='xx-large')

ax.text(left, bottom, 'left bottom',
        horizontalalignment='left',
        verticalalignment='bottom',
        transform=ax.transAxes,
        size='xx-large')

ax.text(right, top, 'right bottom',
        horizontalalignment='right',
        verticalalignment='bottom',
        transform=ax.transAxes,
        size='xx-large')

ax.text(right, top, 'right top',
        horizontalalignment='right',
        verticalalignment='top',
        transform=ax.transAxes,
        size='xx-large')

ax.text(right, bottom, 'center top',
        horizontalalignment='center',
        verticalalignment='top',
        transform=ax.transAxes,
        size='xx-large')

ax.text(left, 0.5*(bottom+top), 'right center',
        horizontalalignment='right',
        verticalalignment='center',
        rotation='vertical',
        transform=ax.transAxes,
        size='xx-large')

ax.text(left, 0.5*(bottom+top), 'left center',
        horizontalalignment='left',
        verticalalignment='center',
        rotation='vertical',
        transform=ax.transAxes,
        size='xx-large')

ax.text(0.5*(left+right), 0.5*(bottom+top), 'middle',
        horizontalalignment='center',
        verticalalignment='center',
        fontsize=20, color='red',
        transform=ax.transAxes)

ax.text(right, 0.5*(bottom+top), 'centered',
        horizontalalignment='center',
        verticalalignment='center',
        rotation='vertical',
        transform=ax.transAxes,
        size='xx-large')

ax.text(left, top, 'rotated\nwith newlines',
        horizontalalignment='center',
        verticalalignment='center',
        rotation=45,
        transform=ax.transAxes,
        size='xx-large')

ax.set_axis_off()
plt.show()

![]( AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4pVW9t/H7y4AUBRUE7BQbHKz42hUVxd45xyMWsB09 gmBDxQp2ilixHhVFxYaIiKCooKiAooINFAXEDgoovc383j/Ws5lNJskkmczszLPvz3Xl2slTV3LN 7HyznrV+K1WFJEmSpH5YY9QNkCRJkjR/DPiSJElSjxjwJUmSpB4x4EuSJEk9YsCXJEmSesSAL0mS JPWIAV+SJEnqEQO+JEmS1CMGfEmSJKlHDPiSJElSjxjwJUmSpB4x4EuSJEk9YsCXJEmSesSAL0mS JPWIAV+SJEnqEQO+JEmS1CMGfEmSJKlHDPiSJElSjxjwJUmSpB4x4EuSJEk9YsCXJEmSesSAL0mS JPWIAV+SJEnqEQO+JEmS1CMGfEmSJKlHDPiSJElSjxjwJUmSpB4x4EuSJEk9YsCXJEmSesSAL0mS JPWIAV+SJEnqEQO+JEmS1CMGfEmSJKlHDPiSJElSjxjwJUmSpB4x4EuSJEk9YsCXJEmSesSAL0mS JPWIAV+SJEnqEQO+JEmS1CMGfEmSJKlHDPiSJElSjxjwJUmSpB4x4EuSJEk9YsCXJEmSesSAL0mS JPWIAV+SJEnqEQO+JEmS1CMGfEmSJKlHDPiSJElSjxjwJUmSpB4x4EuSJEk9YsCXJEmSesSAL0mS JPWIAV+SJEnqEQO+JEmS1CMGfEmSJKlHDPiSJElSjxjwJUmSpB4x4EuSJEk9YsCXJEmSesSAL0mS JPWIAV+SJEnqEQO+JEmS1CMGfEmSJKlHDPiSJElSjxjwJUmSpB4x4EuSJEk9YsCXJEmSesSAL0mS JPWIAV+SJEnqEQO+JEmS1CMGfEmSJKlHDPiSJElSjxjwJUmSpB4x4EuSJEk9YsCXJEmSesSAL0mS JPWIAV+SJEnqEQO+JEmS1CMGfEmSJKlHDPiSJElSjxjwJUmSpB4x4EuSJEk9YsCXJEmSesSAL0mS JPWIAV+SJEnqEQO+JEmS1CMGfEmSJKlHDPiSJElSjxjwJUmSpB4x4EuSJEk9YsCXJEmSesSAL0mS JPWIAV+SJEnqEQO+JEmS1CMGfEmSJKlHDPiSJElSjxjwJUmSpB4x4EuSJEk9YsCXeirJou71BoPP JUlS/6WqRt0GSfMsyaKqWpxkS+CFwD+B91fVlSNumiRJWsnswZd6ZijcbwN8B3gUsMhwL0nSeDDg S/MoyV5J7jPKNgz13H8L+C3w8qrad+JxSfz/L0lSD/kLXponSR4LvB3YK8k9RtSGJFkT2IM2LGdv 4Lhu3/pJtkryuCQbVdWSUbRRkiStXAZ8aZ5U1deBlwIPAvYeRciv5lpgC+AK4JSqqiSPA94P/Bw4 Ejg9yV2h/VGwqtspSZJWHifZSvNgMO69+/xlwBuAE4C3VtVPVmE71qD94X4wsD3wMeBmwNOAvwBf BC4BXg/8CtgBWFy+EUiS1BsGfGmeJFm7qq7qPt8d2As4mRbyT11J97zuD4sJ2zemjcG/FbAOsD/w jao6pdt/MnBlVT1kZbRLkiSNzpqjboDUB13QvqqrXPNyYD1az/mTgBskeUNVnbYS7rk4yW2BhwHb AOcAP62qk5M8ALgtcEFVnd+dE+BetNB/Ylcff4k9+JIk9Yc9+NI8SXIH4ETgdODrwHnAg4FnA0cB e89XT/6EUpjfAG5E+4P9BsC1wMuq6qOTnLc9sCdwD+BBVfX7+WiPJElaOAz40grqxr0vAv4PeDjw 1Ko6cWj/q4C3At8E5q0nv+u5PwH4DfDeqjqmC/BfBa4G7jMI8EnW7dp3R2BT4PFV9Yv5aIckSVpY HKIjraCu3OSSJJvTSlOeBJBkraq6pqr2T7I28CZgcZK3VNVP53q/JOmG1DwKWAy8Ezi+271D97oX 7QnCwMbAXWgTa59RVb+b6/0lSdLCZg++tIIGgTvJ8bRJrfeoqsu68e2DhaduSAv+GwFnAK+oqp+v 4H0/Ajy8qm7XfX0ArUznbsChVXVpkpsCt66qXyZZvzWnLl2R+0qSpIXNOvjSLE2sGz80QfUzwO2B 3bvti1n6f+xy2rCZ84AtgQtX5P5dG64CLuu2vZMW7ncFPj0U4vej1eS/UVVdYriXJKn/DPjSLHST WyvJekk26sbBD3wP+CHw9iQvAaiqa7p9DwSuAXYE7lZVf5rFPZf5g6L7o+IY4M5JjqP9UTHoub+i O++RwH2BX9P+GJAkSWPAMfjSDA1VrtmKVlf+zrQSmGcBe1XVSUleDXwAeHeSuwDfBjYE/hu4JXB1 VV0yh3vekFYh519DTwx+DhxGK8X5FeBj3XwAktwbeFl3zsFDf2hIkqSecwy+NAND4+y3An4A/JnW W38tbbLrpsCuVXVokvsCLwSeDGxA6z3/C/CU2VSumfAHxbuBzYBfAsdW1ce7Y3YAXk1btfbzwCnd cQ8Fbg081Go5kiSNFwO+NEPdJNWvAGvRJsn+pNv+KeCZwFOBI7pQvj5wc+DewN+A31TVX+dwz9vT auv/m1Zf/+60XvlDq+oV3TH3pfXiv5C2gNU/aEH/9VV1xty/Y0mStDpyiI40czcCtgbeNRTu9wN2 Al4AfKubWEs3DOcSYEblKIdKX5Jkzaq6tquvf3/gF8Crq+qnSTYD3gg8J8m6VbVrVZ0MnJzkvbQq Pf8ALqmqy+fvW5ckSasLJ9lKUxiUuRxyc+AWwCDc7w+8nDa59XNVdXGSdZN8eJb32bQb/rMGQBfu twbeC+wMnDWom19V5wJ7A18EnpbkA4PrVNXfqupXVXWe4V5adZJsnmRJkl3meP6zu/O3X4lte8t8 X1vSwmXAl4Z0deOHx79vkeSuXfj+d/fxoCTvok1i3Q347FCg3hnYOcn9Z3i/DwDHJ9liMEG2s0d3 7TsCP+6OXSvJGlX1Z9rKuF8EdkrynhX9viWtsOo+Vqok2ybZp3uaNxvz2rbp2pHkKUn2ns/7SZod A77USXIz4PVJ3tSF+zsDZwFPB9asqrOBI4E302rOvxT4xCDcd2Phd6KtKjvTse+DUL/28MaqehHw MdpE2Zcn2XJQCWdCyP8csEc3VEjSCFTVH4B1aWthrGzb0obpzTbgr8p2PIX2pFHSiDgGX1pqDeCG wMuS3JpWs/6btBC9uDvm7cDGwMOARbQhO39K8gRaj/tWwEOq6qKZ3LCqdk9yq6r6S1dTf40uLFBV L+hq4D8P2CfJG6vqD0nWGIT8bpjQVcAn5uUnIGnGkqwNXFtVi6vq6lV9+1V8v6lM1Q4reEgjZA++ 1Kmq84F9gKOA5wD/pFXL+flg8ixt0uzbgBOA9wCnJfkzLWDfDnhEVf1muvskOaR7OkA39Oev3dOD rwGfSbLlUJv+h9Yr+EzgTUk2G6p1v6gbk/+qqvrtvPwQJE1qaJz8o5O8o/t/fzlwq6nG4Ce5Y5Jj klya5B9JPprkLtOM11+zG/by5yRXJPlBkrsOXW8f4KPdl8d311mSZOeZfQt5dpLfdNf+dZKnTXZQ kpclOT3JlUn+nuTgJLeYQTt2SfJd2lPPDG1fkqFFAZM8K8nPklye5IIkhyW504R2PKQ773lJXpLk rO74E5PcvTtmpyS/7L6f05M8YgY/B2ks2IMvcb0qNpfQHjmfB2wJ7AK8uutJTxeuf5jkibSe9a1p vf4/AL5ZVX9czn22pdXNf0ySB1TVb7ve+H8mOZpWavP9SfaoqrMAqmrndnue1V3jjVV1boYm5c7z j0PS1PanBfsDaL9DLwPW7/Zd12udZBNaR8ANaRPm/0YbuvKpiccOeRvtaeEBtCE/ewJHJLlD18nw ZeBWtPeet7F0KOCJM2j347pzDwIupnViHNq99X1h6Lj3A7sCx3bHbgG8GHhokm2r6sJp2nESbc2P fWgVwJ45dN1/dj+XPWk/wx8Be9Eqf+0OnJTkXoP3vSG70koTHwSsR1v34+juj4zXAh+krRL+KuDL XSfIhTP4eUj9VlV++OFH90F7qvVE4JG0X8RLgP2H9i+ah3s8hlb68kJgqwn7Xg/8Efg6cLsJ+w7p 2nM4cJtR/6z88GOcPoBnd///fg6sNWHf5t2+nYe2Hdhte/jQtjVoc3QmHju49o9ow/QG25/YbX/0 0Lbnd9u2m2G7B227BviPoe03As4B/jR4XwO26Y79yoRrPKHbfsBM2kF76rh4ku0bAVfQCgesNbT9 HrRFA780tO0h3fXPBdYb2r5rt/3fwKZD2x/Tbd991P9W/PBjIXw4REdjbdALPlBVS6rqq1X1TeAd tF9Uew4msVY3VCfJZkm2nHj+TO5VVUfTeq7+CpyYtlLt4P5vpT36vgvwviS3G9q3M/BV2i+yxUga hY9XN+F9OR4LnFFV3x5sqPYE8P3TnPN/df1qWid0r1tOdvAsfbuqTh9qy6W095pb0QI2wOO71wOG T6yqI4Hf0oL+itiBVlDgPcM/w6o6Ffg27cnmxPfUT9f1y/4OnlYcWVXnTbJ9Pn5W0mrPgK+x1Y1h X5JkkyQ7pJV2u/dgf7Wx9PvSQv4ru3G3N+zGz38ceB9tVdkZ6e61Zvf5XEP+k4Etaw6r4kqaFxOH kExlcyZf6O7305xz7vAXtXSy/oYzvOd0Jpunc2b3ukX3unn3OlkVsN8M7Z+r6a5/Bm1Y0qYTtp87 4et/da/XGw5ZVYPt8/GzklZ7jsHXWMrSOvf/AXwBuA1trCxJ9gXeXVUXVtXp3ddLaGM/n0D7w/hW wPZVdeUs7rlGtUWsNq6qf1TVUd3Y+n1pIf/+3R8VVNVbu30vAN6V5JVVdWa3z3Avjc4VMzxuLlVk pnoyt1Aq5oyiMs5UP5OF/rOSRsoefI2dLmgvTnJH4Du0HqGX00pfvg14HbBXkpsDdI+130rrcf83 rQfuvlX1k9nct+vBvznw2yQv6rYdRfvDYaqe/A937XpLkrVW4NuWtGr9gbZQ3USTbZuNuYbsrSbZ Nqhcc86E1/+Y5Nitad/TTNox1b6zl3P9y2gFDiStIAO+xk4XtDekDbH5JfDKqvpEVZ3A0moYe9Jq z2/anfP7qtofeCiw0/BY1lnaEPg78NQkW3fX/jqtAsRkIf/ttIoUr5/huF9JC8PRwFZJdhhsSLKI tl7Giri0e53tUJSHJdlmqC03oj0h/Avws27z17rXVwyfmOTxtD9MjpxhOy5tp+UmE7Z/G7iStjjf dR0WSe5GG59/zIQ5CJLmyCE6GgtdmUsAqqpoPUj3B/asqpO7Y/YF9qCVhNuQtmLtJUkOrKq/d+de RVtYaqb3XVRLa+jTDfl5F22M/aPpxqJW1dFdE/enhfz7VVfbvqreOedvXNKo7Ac8A/hKkvextEzm Bt3+ufbEn9Kd+5okN6UNGTq5ugXypvErWs36g2jlgJ9DG5r4jEGo7t6fPgDsluQbtDVBNqO9J55L Kzwwk3b8GHghcFB3nWtpk2IvTPIG2iTeE5J8nvZeuzvtSepr5vgzkTSBPfjqtSTrdJ8u6oL9xgBV 9QNagP+/7rhX0HrRX0JbtOpLtF6oVwD7JdloDvceDAXaIsmDBtur6mPA54E3JNliaPvRXRvOBc5I cofZ3lPSSjXjUF5t4bwHA9+nva/sTZvU+uLukInzd2Z07ao6m/YUYCNaR8Fnge1mcOrXgFcCO9GC +iLgWVX1+QnH7UF737st8E7a+hufB+4/NOl3ee34NK0+/cNp5YY/C9ysO+9A2voia9PmH70YOA64 Xy1bA9/VcKU5Sss8Uv8k2ZzWY3ZqVR2f5C7AD4EXV9Uhg8Wtuom2XwW+BbyxqgYLsvyQVqv+XsC2 c5nc2o25/xPtl+lrgKOq6tfdgldfB35KG/JzydA5T6IF/eeUK9RKvZLkKcBhtMB88qjbI6mf7MFX n92CNpb+A0meT1tt9od0401r6V+3N6Y9hj6u2oqyayZ5HK23/83A7Vegcs0i2qPsq4A3AQcm2bOq fgZ8DHgA8IQka3Tjc6mqI4BHGO6l1VuSdSd8vSbwUuAilo57l6R5Z8BXb1XVSbRH0pvRHhf/Fnh+ Vf0Krjcu/zLgAuCx3S/gB9Amn10CnNMtCDMjg5A+5O/AF2mP6d9Mm9D24iRH0yasXU57BH6DbjjP Wl3bZ3xPSQvWCUk+kORFSV4NnAw8EHhrVV094rZJ6jGH6KiXuvHvg2o5/6Qt034u8L9Vddwg3HdD dNYF3gvsSFu46gra2M8dquoXc7j35sBawB+r6qokG9CWpz8HeB5wV+ADwDpdu7YG3lFVr1uBb1nS ApNkb+C/aZNZF9Em1R9UVQePtGGSes+Ar17rwvtbaUH6JbRJbq8YLB+f5AZVdXUXwp8I3JPWm3/o JBO+hq/rfxxJWqCqygWvNNYM+OqVQc/9FPv+F3g3bfn4l1XVd7rtawJrV9Vly7vG0LVqsl8g3RCb u9EqUTyV9tTgjcARtOFCTwJeW1XHdsffG3gk8OUVqK0vSYOnh2fRJugfMofzn02rIvbwqjpuOcdu S1vZ++CqOncG174prZPl+Kr63mzbNhtTvT9L48Qx+OqNrub8kiQbJtk2yfZJ7jrYX1UfpoXsOwDv SvKQbtftgEO7+swwi9JsE8fcV9U1VfWTqtqZFvL/DnyONgTo6u5ju8Hku6r6MfA2w72kFdXVoF8X +MwquN22tM6LzWZ4/Ebd8Q9eaS2SdB0XulIvDBaU6kpefhK4PXCTbt+HgM9U1UlVdVA3/H4/4JNJ jgC2Ae5Hq1M9XF1npve8LW3RqrvQxtieUVXHVdVHk3wXeBxtmNBvunZtRVtA5uTufq7cKGnOkqwN XFtVi0cweXe2PeX2rEurgD346oUuaN8e+C5tvP3bgefSerKeD+yf5OHdsQfRFle5hrbgyq1oNalP m8M9t6FVyHkbbTLde4GDk7y5O+bMqnoX8CDao/O/0P7w2LcbGiRJM5bk2UmWJHl0knck+TOtGtet kmze7dtlwjl3THJMkkuT/CPJR5PcZbJjO2sm2SfJn5NckeQHw09Dk+xDW9wK2uq4S7qPnado80No 858A9h46/uChY26V5JNJzktyZZJfJ3npJNf6bpI/JblDkm8muSTJ+UkOSrLeLH6UUq8ZMLTaSzL4 Q3VPutVnBwvIJPkS8G3airUvT/KbqvpzVR2c5Pu0yhb/qqrz5nDf29AWqzqTtuLjt4B7AN8Ddk1y eFWd1o3p/2mSF9OeFPwP8JqqunZFvm9JY21/WrA/gPa7/DJg/W7fdU8hk2wCnADckNYB8TfaAoCf mnjskLcBi7trr0t7bz0iyR2qajHwZVrHyPO6Y8/ozjtxirae3l3jncDh3Qe0Tg/SVgo/EdiEVmHs bODxtKGUt6uq3YeuVcB6tPf179KGXT4A2BXYAnjsFG2QxooBX6utwRAZ4IZVdUmSewJ/Hgr36SbO HtJVyXkf8CjaAlNU1e/neN/BHxRPBK6llbg8rtv3GNofDXsCv+/us6R7PY/2S/Iow72kFbQEeGBV XTPYkGT9SY57NS04P2KoetgHge8s59r3H7x3JTkD+ArwCOCYqvplkh/RAv63quqE6RpaVecnOZIW 8H9RVYdO0sbbADtW1Ve6bR9M8mVgtyQfGaxfQhvic1Pgo1X1mm7bh5OcR+vEedR0bZHGhUN0tFrq esUXJ7kH8OMkd6GtFnvjQY17un/f3dfH0OrhPz7JOkMhfdaGxszfHbiSVuOeJAfQJpG9BDisqi5N sn6Se00433AvaUV9fDjcT+OxtHlB3x5s6N7D3j/NOf83YW7QIMBvOftmzsgTgN8NhfuBA7rXx0/Y XsB7Jmw7sHt93Dy3TVotGfC12snSRaxuSit7eSVtXPvPaBNdd+t67xd3de6rq2l/AUBVXTlPE1uv BdboFst6K20J+l2BTw+tRPte4LmODZU0z6Zcp2OCzWmlgSea7gnm9cpeVtVF3acbzvCes7U5rQjB RGcM7R92ycRhlVX1N9oQzS3mu3HS6siAr9VKrr9C7Ra0R7X7VNVgouv5tOExzwAYVJRI8iDgxsAZ E0tbzuCemfD1Wt2nRwO37R5V70UbW/+lqrqiO2574L4sXUlXkubLFTM8bi6L3SyeYvvKqoDjgjzS PHMMvlYrXbjfmNaz81dgcVV9tdt3XpKnAEcC70tyH9rk2vsC/0X79/6xbtz+jAyVwlyXthjWv6rq mi7z/xT4EfBQ4Oiq+uTQefejjStdk5k/Spek+fYH4I6TbJ9s22zMNpRPd/w5wNaTbN96aP+wDZLc vKr+PtiQ5JbAjSY5VhpL9uBrdXQl8HnaAit3S/LYQS97VZ0IPIT2iHk34DTaMJlb0lZnnPHE2qFw vzWtbv0pSb6R5Kndvf5CG5bzC+AxSY5KsmuS9wMfAu5JmzT2h/n4piVpDo4Gtkqyw2BD9xRztxW8 7mAY4kyH7Ux3/NeA2yd50mBD956+J+0PgyMnOWdiCc1XdK9HzbA9Uq/Zg6/VTlcx53XAv4BX0Ybj /AL4Uzf2/lfd8Jjb03qAzgLOGu7tmeF9FifZklbn/nzgV8CdgA8DJNm4qybxNNqqtY8CdqCtXnsK sFNVnTHpxSVp1diP9h75lSTvY2mZzA26/XMdHnNKd+5ruvlQVwAnT9Wh0T1h/SPwtCRnAhcCZ3er ee9HW0fkc0k+QOuFfyztPfWgSVb6vgjYKcktaE9R79d9j9+sqm9MGFUpjSV78LVaqqp/0+pAv4f2 i+F1STbtJrymqi6qqlOq6pCq+uFswn26Bai6sfaPpf3xsFNVPbmq/oNW5x7gVUluVlW/of2hcQ9a PeZtgV0M95JWkhmH8qo6H3gwraPiJbQVu8+kLfYH7YnorK9dVWfTngJsRFv06rPAdss57VnAn2gV bw4F/re71oXA/YEvADt3+zcDXl5Ve0xyncuAhwGb0v44eBTtqemOM2m7NA5S5dwWrb66+vZvoD2e /Siw96C6Qhf05/QPPMmdgKcBdwb+WVUvGkzw7fYXbfLswcB+VXXBit5TklaVbr7SYbR69yePuj0z leS7wJZVddtpjqmqshtfY80hOlqtVdXFSd7SffkK4Nokb6uqv61AuF+D1tP0Wtq40bd391qSZK2h CbPfAZ4DLE7yzqq6wHAvaaFJsu6gulf39Zq0MewX0coLS+oZA75We0MhfzFtqMxVSV41m2o5E663 JMl7u+u9AdgxyZFVdXpXQWet7rinJfkMrVrO1UneNE/19SVpPp2Q5Me0eUQb0KqKbQu8YlBKeDVj 77y0HAZ89UIX8t8BXA18fq7hfuh6/+iq4dyAFuB3T7J/VZ0zVCaTqnpmkquAQw33khaoo2hzlXYG FtHKDD+vqg4eaavmprBuvrRcjsFXrwyPk5+n621IG6rzclr1nAOq6pxuDP7aq2nvlyT1lmPwJXvw 1TPz3YteVRcmeXv35csBkhzQ7TPcS5KkBceALy3HhJC/O221REmSpAXJgK+xMKHE5TLDeJY3tKcL +W+jhfunrtzWSpIkzZ1j8DU2uuXZByvU3gL4D+Bi4LfdJN1Fy5uc263YeAPg747xlKSFxzH4kgFf PZfki8CvqurNQ9u2Ab4K3Ia2iuM5wH9V1e9mcV1/gUjSAuT7swRrjLoB0sqSZGvgfsBrkrys23Yz Wrj/C22hl/2AdYCTkixvmXVJkqQFz4Cv3qqqM4CdaIu77Jtkd9oCKX8G3lBVH6qqtwPPBU4Hjkjy oJE1WJIkaR44REe9lO4Zbff5g4D3AHcBTqQt9PLg4Um1Se4FHAjcGXhiVX1/Odf3EbAkLUC+P0v2 4KunqqqSrNV9/n1aecuf05Znv65e/tAxpwCvoPX2H5Zk+1G0W5IkaUUZ8NUrSTZJsjZAVV2TZKsk D6uqE2kB/nfAA5K8ZuiY4ZD/cuA84ONJ1h3NdyFJkjR3Bnz1RlfCck/g493XW9PG1j8jyY2q6gRa T/5pwJuSvByWCfk/AZ4NPLSqrlj134UkSdKKcaEr9ckS4FLg6Uk2Be4DHA28F7gMoKpOTLJHt+0d Saiqdw1CflVdU1U/G9U3IEmStKKcZKvVWpI3AF+uqtO7r9cCDgL+hzbU5gnd0BuGF7JK8kCWTrx9 dVW9Z5b3dRKXJC1Avj9LDtHRaizJPYA3AfslWSfJ4N/z1sDZwCbA6wZj6bsVbNfoKuz8gFYH/1Tg XUl2G8G3IEmSNO/swddqK8mawMOAC6rqJ4MhNknuCxTweOA1wFHAM6rq0iRrTCiP+WDaHwkv6urm z/Te9hBJ0gLk+7NkwFdPJLkTcADwsqo6q9u2KbAHsBfwNeBZVXVJt+/2wAZV9bMk6852Qq2/QCRp YfL9WXKSrVZjw4tZAZsBjwPW7obbnFVV5yU5iNabvxfwqSQvBm4O7AdsmuQBg9AvSZLUB/bga7U0 mDCbZANahZwAOwCHAL8AXkgL+ZXkFsCutBKal9Eq7WwAPKIrizmX+9tDJEkLkO/PkpNstZrqwv2t gZ8Cd6+qa4HjaDXs7wp8BLhd18v/N+B9wHOA7wI/AO4/13AvSZK0kNmDr9VWkq2A7wO/BB5dVVd1 ZTIfAXySCT35Q+etU1VXruC97SGSpAXI92fJHnytRpIsmrDpLFrP/N2BF3QVcq4BvkHryb8brSd/ y+GTVjTcS5IkLWT24Gu1MDTm/jbA5cC/uq9vShtycw3wuKr68+B44FHAx4C/AP9VVefMY3vsIZKk Bcj3Z8kefK0mujC/OXAu8BPgRUn+o6ouAl4A3Al4+fDxtJ78XYGbAEsmXlOSJKmP7MHXaqPrvf8t sA7wHWA9WrnLo4B3A88Cnl9Vhw+dswhYt6ounee22EMkSQuQ78+SPfhawJJc799nVf2J1kv/++7j NOAI4O20nv1/Av/Z/SEwOGfxfId7SZKkhcyArwWpK2+5JMktk9x5aNePaOE+tGC/E/DfwINpC1g9 Crj3qm6vJEnSQmHA14LULVC1AW28/ZFJXtdtPxX4Eq1Kzt2r6gvAjsCvgTNp4+3f0pXLlCRJGjuO wdeCluQoSw/eAAAgAElEQVRhwJuAbYGfAa+oqh8lOQh4EnDPqjovyY2BWwFvAPbv/hBYme1yjKck LUC+P0sGfK0Gktwc+E9gD9ownE8CJwHPBH4DvKGqLl/FbfIXiCQtQL4/SwZ8rSa6ajgbAQcCj6QN L7uKttjVHlV12ipuj79AJGkB8v1Zcgy+VhNdNZzzq+pZwEuAbwO3AB4IPGekjZMkSVpA7MHXaqOr rFPd55sAjwXeTFvB9ueruC32EEnSAuT7s2TA12ouybpVdcUI7usvEElagHx/lhyio9VUksGb95Uj bYgkSdICY8DXamkwVKd8BCVJknQ9BnxJkiSpRwz4kiRJUo8Y8CVJkqQeMeBLkiRJPWLAlyRJknrE gC9JkiT1iAFfkiRJ6hEDviRJktQjBnxJkiSpRwz4kiRJUo8Y8CVJkqQeMeBLkiRJPWLAlyRJknrE gC9JkiT1iAFfkiRJ6hEDviRJktQjBnxJkiSpRwz4kiRJUo8Y8CVJkqQeMeBLkiRJPWLAlyRJknrE gC9JkiT1iAFfYynJDZOcneQlo26LJEnSfDLgayxV1WXATYErR90WSZKk+WTA1zj7JvCwUTdCkiRp PqWqRt0GaSSS3Bo4Bvgh8EHgLOCKicdV1ZJJzq2qykpvpCRpVnx/lgz4GmNJlgnuQwoIUFW1aJJz /QUiSQuQ788SrDnqBkgjdMgMjvEvYEmStFqxB1+aA3uIJGlh8v1ZcpKttEK6cptLkrx+1G2RJEkC A77GXJKbJXlHkh8nOSfJ/bvtGyXZO8lW053fldv8J3DhqmivJEnS8hjwNbaS3AY4FdgTWB/YDFin 230h8HRgtxlc6nDgSSujjZIkSbPlJFuNs32B9YD/B/wFOH+wo6oqyZHAY2ZwnY8AhyQ5GvgwU5fb PHs+Gi1JkjQdA77G2SOAg6rq50luNsn+c4DbzOA6P+1etwEeNcUxBSxTblOSJGm+GfA1zm4E/Hma /esws1D+5hkcY7kqSZK0ShjwNc7OAe4J/N8U+7cHzljeRapqn3lskyRpEkl2YYadJUl2HnxeVTNZ 80TqFQO+xtkngbckOQo4abAxyZrAXrTx9y8eTdMkSRMcPItjPzn0uQFfY8eFrjS2uiD/JeCJtEm2 twLOBjamVdU5DPjvmuQ/ycSFVJLcEXgT8DBgI2CHqjouycbA/sCHqurHK/lbkqTeSrL5hE0bAJ8C LgXeB5zZbT8N+CGtiMIuVfXLVdREacEw4GusJQnwX8BOwJ2AAL8DPldVn5vmvOsCfpJtgBNpj45/ BOwAPLyqjuv2/ww4taqetzK/F0kaJ0k+Snvf3r6qFg9tL2At4DjgjKp64YiaKI2MQ3Q01rre+S92 H3P1DuBi4D7A1QyV2+x8A9hxBa4vSVrWk4E3D4f7gaq6NsmXgL0BA77GjgtdaWwlOT7Jw6bZ/9Ak x83gUtsBH6iqv06x/1za8B9J0vxZD7jlNPtvydLFC6WxYsDXOHswsOk0+zcFHjKD66wF/Gua/TcB lsy8WZKkGTge2D3JIyfuSPIoYA/ge6u8VdICYMCXpnYr4PIZHPdb4IHT7H8c8PN5aZEkaeCltOGR xyQ5PckRSY7o9h0N/Bt4ychaJ42QY/A1VpI8kVY1Z+AFSR4+yaE3pU2W/ckMLvtB4CNJTgK+MnSv TYC3AQ8Anj7nRkuSllFVv09yV+DVwONpK4kPKoccCOxfVf8YVfukUbKKjsZKkn2AN87g0CuBU4AX VdXpk1xnYpnM99AeB18N3IDW879et/tdVbXnCjZdkjQDE9+fpXFkwNdY6cpirkErh3k1sAswsRxm TVaVYcJ1lvkFkuQ+wNNYWm7z98ChVXXSJJeQJM2TJDcEbgacB1xhwNe4M+BrbHWLppxfVTMZZz/x XHuIJGnEkmwH7Afcu9u0A/AdWpGEzwP7VtWxI2qeNDJOstXYqqo/zCXcT5TknCRPmGb/45OcvaL3 kSQtleQBwLeAmwMH056cAlBV5wOLgOeMpnXSaDnJVmMtyfa0RVBuB2zI0l8Q1X1eVbXlci6zGXCj afbfCNh8xVoqSZrgLbShkPcG1gWeO2H/94BnrOpGSQuBAV9jK8mLgffRVp49GfjVJIfNxxi2OwCX zMN1JElL3Rt4Y1VdlmTdSfb/iekXwpJ6y4CvcbYncALwiKq6erYnT1jl9nVJnj/JYRsCdwGOmVsT JUlTKOCqafZvQquIJo0dA77G2aa0CVizDvedOw59fnPgxhP2F3Ap8BngNXO8hyRpcr+g1b7/wMQd SRYBTwV+vKobJS0EBnyNs1/RVqudk6q6NUCSJcAeVfXZ+WqYJGm53gl8Ock7gUO7bet3r0fRnp6+ chQNk0bNMpkaW90E288Bj6yq02Z5rmUyJWnEkrwU2J/rd1gO1jnZs6reP5KGSSNmwNfYSvJp4G7A 1sCPgHOBZRa4qqqdJznXgC9JC0CSWwM7snSRwf8FNquqP460YdIIGfA1trqhNctVVcusFzEc8LvV cZ/D9cttTnKZWrQCzZUkdZKsRxt7//WqOmzCPjtgNPYcg6+xNVlwn6M3A68Dfg58FrhostvN070k aexV1eVJngr8YNRtkRYiA7604p4PHFlVTxp1QyRpjPwU2GbUjZAWIgO+xl6SrYDtgY2BT1fV2Ulu QCt9eV5VTVdnGWAD4OiV3ExJ0vW9CjgqyY+r6vOjboy0kBjwNba6sfMfAl7QbSrg+8DZwDrAr4F9 gAOXc6lTaJO7JEmrzgG0VcIPTfJ+4A/AFQBJThgcVFXbjaR10gjN1xhkaXX0Slq4PxDYgVZ9AYCq uhg4HHjiDK7zEmCnJE9YGY2UJE3qNt3rH4HLaE9hb9ttu233cZtJzpN6zx58jbPnAZ+vqlcmudkk +38NPHIG1zkIuBw4Islfmbrcpr1IkjRPqmrzybZ3VXQm3SeNCwO+xtlmtJUQp/Iv4KYzuM5taMN7 BjWXJ1sd1yo6kiRplXCIjsbZv4BNptm/NfD35V2kqjavqi2616k+tpi3VktTSfYhWULy4Fmc811m uCbE0DlLSI6f4t4+qdIqleSRSfZPcnCSrbttN0qyXZKZdNJIvWPA1zg7FnhekvUn7khyR1r5y6+v 8lZJc1dDH7M9by73kkYmydpJjgGOAfYEdgZu0e2+ljaPavcRNU8aKQO+xtnewPrAqbQJtwA7Jvlg t+0y4K0zvZi9SFoADqI9eTpl1A2RVoE3AQ+nhfituH6hhCuBw4DHjqZp0mgZ8DW2quoc4H7AmbTe H4AXAS+krY54/6r66/KuYy+SFoyqC6g6k6orRt0UaRV4GvDxqvoAcOEk+88Etly1TZIWBgO+xlpV /b6qHgPcDLgvLfDfvKoeWVVnz/Ay9iJp7pLNu7HrB5PcjuQwkgtILiY5luTO3XEbk3yM5G8kV5Cc QvKQCdeaehx88jSSn5JcTnIeySEkt5ymXTcgeQPJWSRXkpxN8haStefwPW5F8kmSP5FcRfJ3ks/S hsJJc3UL4CfT7L+C9pRWGjtW0ZGAqroI+PEcT7+uF2mKcptnAjvOuXEaF5sDJwOnA58AtgCeDHyX 5IG01ZIvAj4HbET7d3cMyR2p+tO0V05eRlvv4SLgU7QJ5o8Cfgj8e5LjA3wReALwe+D9wNrAc4G7 zuq7Sh5Fe4q1CPhad73bAE8BHkvyUKpOndU1peZ8WjW0qdyDpdXNpLFiwNfYSvI04NFVtcsU+z8F HFVVX1rOpexF0nx4MPA6qt5x3Zbk9cCbacH/UKp2Hdr3LeAQ4GXAy6e8arI5sB9tCMO2VP2x2/5a 4Eu0oD1xwuxOtHB/EvBQqq7uztmb2Yzvb3NPPgdcCmxH1W+G9m3TfV8fA+4542tKSx0JvCDJR2lr kVwn7SnWLsB7RtEwadQcoqNxtgdwzTT7r6KtUrs89iJpPpwD7Dth26e610UsnQg+cChtjsfdlnPd Z9A6c95/XbgHqKrumpNVw3lO9/ra68J9O+ci4C3Lud+wnYEbA3tfL9y3a/2aFu7vQTcpXZqlfWh/ PJ5Gm2AOsFv3ejzt/9TbV32zpNGzB1/jbGvgM9PsPw34zxlcx14kzYfTutA97G/d65lUXXa9PVVL SM4Hbr2c627bvX5vmT1V55D8iTZkZuI5i2mTzSf67nLuN+x+3evdSfaZZP9gDP7WwBmzuK5EVf0j yb1pf3T+d7f5yd3rx4DXVNWyQ9CkMWDA1zhbC1h3mv3rAevM4Dr70MYzn0arrQ+wW5I9gUcCv8Ne JC3fskGk6lqSyfc119L+HU/nxt3reVPs/zvLBvwbAxdQtXiS46e6zmQ26l7/Z5pjCrjhLK4pXaeq LgB2TbIbsDGtyMHfq+qFo22ZNFoO0dE4O4M2zngZaZMMnwD8dnkXqap/APcGvgA8otv8ZOD+tF6k +9uLpBEa/NvbdIr9N5/inA1JFs3w+OXd+65UrTHFxyKqPj2La0oAJNk7XZWpas6vqvOG9m+T5I2j a6E0OgZ8jbMPAQ9K8pm0iYgAJNmCNnTngcBHZnKhqrqg2gTIm9EC0C2ADavqhVU1WX1maVX5aff6 kGX2JFuybO/94JxFwIMm2bfsdaZ2Uve6bNlOacXtzfRVne7SHSONHQO+xlZVfQL4IPB04OwkFye5 GDiLVkXkw1X14Vle87pepKpaMv+tlmbts7TJ5LuTLJ0MnqwBHMDQug1DDu5e33a9uvfJhsDrZ3Hv g2klOfcmudcye5M1lqnlL82f9WnD2KSx4xh8jbWqenGSzwNPBe7Qbf4d8IWq+uFMrpHkxcATquoR k+wL8E3gK1X1oXlqtjRzVeeS7EWrg38qyReAi2nzQzYAfsHEXtCqz5H8N22Y2q9IjqSN9d+Rtl7E zFYHrbqQ5D+BrwAnk3yHVue/aE8O7gfclDbfRVquJHejVY4a/GH6oCTLZJkkL6WtTH7mKmyetGAY 8DX2quoHTF4tZKaeS1swaLJrV5IzgOfRhgRJ82li1Z2aZBtUvZvkb7SymM+mBfxvAq+i1amfrFTm fwF7dcfvBvyVtgDXW4Arp2jLZPc+juSuwGDS+YNoJWj/Cnwb+PJ036A0wZOB4XH1L+w+JnoXrarZ zquiUdJCk2WrsklaniRVVek+vwTYs6omHa+f5IXA/lV148n2S5JmJm3eyOAJ0rG0tSOOm3DYt4D7 Ar+qieVlpTFhD7604pYAG06zfyP8vyZJK6yqzgbOBkjyXOB7VXXO8DFJqKofjaJ90kJhD740BxN6 8E+gTea6d1VdM+G4G9DGLF9eVfdf9S2VpPEy/P4sjSt7FaUV9y7gcODYJG8CftltvytLy7g9dURt k6TeSnITWtWzLWlPUgcdL58YHFNVzx1N66TRsQdfmoOJPUTdqrXvoNUOH7YYeF1V7b8q2ydJfZdW YvWrtCeoFwMXdbs2B/5AC/tVVVuMoHnSSBnwNbaS7AycUFV/mGL/5sB2VXXIJPuWeQTcHf8Ulpbb PBM4vKrOnbdGS5IASHIqrczqE6vq50PbHaKjsWfA19hKsgR4ZlUdOsX+pwGfraqJvfL+ApGkEUty JbBXVb1nwnbfnzX2XMlWmtq6tAo5kqSF5y+0BdgkTeAkW42VJJsBm7F0FcStk2w3yaEbAv8LOLxG khamdwO7JflAVV0+6sZIC4kBX+PmOVx/FcTXdR+TKdoKnpKkhecK4FLgjCSfpnXILIbrauQDUFWf mPx0qb8cg6+xkmRbYNvuy48CHwcmLohStF8ap3SLqkx2Hcd4StIIdfOoJt1Fex+HVkVnmXlUUt/Z g6+xUlU/A34GkOTWwJer6pfTnyVJWoC2n2L78dPsk8aCPfjSHExYyXZv2h8Kv5ri2G2AHavqzauy jZI0jnzCKhnwNeaSLAIewYRVEIdNFswnBPw5l9uUJK2YJAG2AjYBfgFcaMDXuHOIjsZWkrsCR9BW PZzOiva8rw9cu4LXkCRNkGQn4ADglrRx9zt02zcBTgReW1VfHF0LpdEw4GucfRDYAHgybUXbi5Zz /PV0K+EOeokelGSy/08bAi+irWorSZonSZ4AfBb4Ma1owj6DfVV1fpLfAs8ADPgaOw7R0dhKcgXw pqradw7nFkurNCzP5cDOVXX4bO8jSZpckh/RymI+kNaZcj7wcOA7VZUkbwSeW1Wbj66V0mjYg69x dgGtjvJcPaJ7PRbYFzhuwv5Buc1fVdVlK3AfSdKy7gK8qqqWtGH4y/grcPNV2yRpYTDga5x9DNgp yfuraqp6ystIcjxAVX27+/o5tCE+56ycZkqSJnE10+eYWwOXrKK2SAuKQ3Q0NpJMrIu8JvA2YAnw fwytgjisqq7XM59kMbDGTKvoSJLmX5JjgXWqarskN2NoiA6wHnA6cGpVPWWEzZRGwh58jZNvT7Pv XlNsL2Biecu/ALeZlxZJkubqbcB3khwGfLrbdvvu9WTgVsBTR9EwadTswdfYSPLsuZxXVZ+ccJ39 gFcB/wYupj0GvgiYapx92mXqtnO5vyRpckl2BD5Cm2R73WbaHKv/qaqvjKRh0ogZ8KVZ6hbHuhb4 Am1hlYcAv6E9Hp5KVdVDV37rJGm8JFmPVv/+TrRwvy+wflVdOtKGSSNkwJfmYJKVbJ9VVZ8dcbMk aewNvz9L48ox+BpbSXZh+lr2BVwJ/An4WVVdPcVx29Mmc0mSVpEk9wTuU1UfnGL/bsAPq+q0Vdsy afTswdfY6nreZ+oi4K1V9e7u3GV6iJJsRQv7GwOfrqqzk9yAVof5vKq6ap6aLkljL8lRwOKqeuKE 7dUtdHUELec8cfIrSP21xqgbII3Q3YDTgO8B/wncvft4arftVOAB3b5fAwd2Ne+vJ82Hab34BwFv BDbvdq/TnfvilfmNSNIY+n/AD6bZfwJw71XUFmlBMeBrnO0O/At4WFUdXlW/6D4Oo9VSvhh4dlUd TuuZ/xmTB/VXAi8ADqRN9LquZ7+qLgYOB+xBkqT5dRPaauFTuZLrV9eRxoYBX+PsycDhk61iW1WL acF8x+7ra4EvAVtPcp3nAZ+vqlcCP59k/6+BO85XoyVJAPyR9pR1Kg8A/ryK2iItKAZ8jbN1gVtM s/8W3TEDFzPJSrfAZsDx01znX8BNZ906SdJ0vgg8PckLJu5I8kJgJ+CwVd4qaQEw4GucfR/YI8nD J+5IsgOwB20M58CdaRV1JvoXrR7+VLYG/r4C7ZQkLesdwE+BDyc5O8nXknyt2/ch2rDKt4ysddII GfA1zl5CW3322CS/TnJE93E68E3a2M6XAiRZlzZZ6wuTXOdY4HlJ1p+4I8kdgecDX19J34MkjaWq ugzYjlbY4FLa3KmHdbvfADzQxa40riyTqbGWZBPg1cBjaZVvCvgDcDSwX1VNujrthIWutgB+DPwb +DJt0u2HaJNtdwEuAbatqr+uzO9FkuRCVxIY8KU5mfgLJMntgfcBj2RpFZ0Cvg28qKrOXvWtlKTx Y8CXDPjSnEz1CyTJTYE70EL+2VX1j1XeOEkaYwZ8yYCvMZJkF1qv+meqasnQ19OqqkMmuZa/QCRp AfL9WTLga4wkWUIL9OtW1dXd18tVVdebjJ7ktsC5tPKYM1ZVf5zN8ZKk2TPgS7DmqBsgrUJbAlTV 1cNfz8EfJrzORAGL5ng/SZKkGTPga2xU1R8GnydZBCwBLquqC2Z5qecCB3evkiRJC4pDdDSWkqwN XA68qqoOnMP5PgKWpAXI92fJha40pqrqKuBvwLWjboskSdJ8MuBrnH0aeHqStUbdEEmSpPniGHyN sxOAxwE/SfJx4CzgiokHVdVxq7phkiRJc+UYfI2tGZbJrKpapvqNYzwlaWHy/VmyB1/jzSo4kiSp d+zBl+bAHiJJWph8f5acZCtJkiT1igFfkiRJ6hEDviRJktQjBnxJkiSpRwz4kiRJUo8Y8CVJkqQe MeBLkiRJPWLAlyRJknrEgC9JkiT1iAFfkiRJ6hEDviRJktQjBnxJkiSpRwz4kiRJUo8Y8CVJkqQe MeBLkiRJPWLAlyRJknrEgC9JkiT1iAFfkiRJ6hEDviRJktQjBnxJkiSpRwz4kiRJUo8Y8CVJkqQe MeBLkiRJPWLAlyRJknrEgC9JkiT1iAFfkiRJ6hEDviRJktQjBnxJkiSpRwz4kiRJUo8Y8CVJkqQe MeBLkiRJPWLAlyRJknrEgC9JkiT1iAFfkiRJ6hEDviRJktQjBnxJkiSpRwz4kiRJUo8Y8CVJkqQe MeBLkiRJPWLAlyRJknrEgC9JkiT1iAFfkiRJ6hEDviRJktQjBnxJkiSpRwz4kiRJUo8Y8CVJkqQe MeBLkiRJPWLAlyRJknrEgC9JkiT1iAFfkiRJ6hEDviRJktQjBnxJkiSpRwz4kiRJUo8Y8CVJkqQe MeBLkiRJPWLAlyRJknrEgC/NUZJnJ1mS5LZzPH9Rkv2S/DHJ4iTHz/E6S5J8ei7nSpKk/jHgS6Pz POCVwNeBnYG3JtkiyT5J7jbLa9V8NizJllO1I8n2SfZOcuP5vKckSZofBnxpdLYHLq6qF1XVZ6vq O8DtgDcCsw34823LadqxPbA3YMCXJGkBMuBLo7MJcPEU+7IqGzKN6dqxUNooSZKGGPCledYNszkk yd+TXJnkt0lelSTd/ockWQI8BLh1N4Z+SZJdgGO7yxw8tH3vGd73sUlOTXJFkrOS7DHFcc9K8rMk lye5IMlhSe40tP/ZU7UjySeB13b7zhnat93Q+Y9O8sMklyb5d5JvJLn3hDZs3p33liQ7Jfl1156f J9m+O2aHJD/qtp+T5Jkz+TlIkvT/27v3YDur8o7j38ciEUTkFqABMSB3aBERWwcvEWSgoFixRSxT oHVkEgsWGmmhVCgdZ+Qi6CARYVAQitBaS0GGcidCy0WlGbmlgECSQklAIZBwN3n6x1qnbl/OZedk J4GV72fmnc1Z79prrX2YWfmd913v2qu7yBzo0l1ptRARCfwZ8B1gcmbOq+VbA7cDi4BvA08CHwEO Bs7LzKkRsTGwN3ACsAlwVG32duBzwHHAucCttfzuzLx3lLEsBe4D3gGcAzwOHAR8ADguM0/rqftF 4DTgTuBSYMOe/nfPzIcjYsuRxgGsA/wN8AngaOAX9dwNmflkRBwEXAbMrr+bCcBUYCKwV2beVscx GXgEmAVsBHwTeJXyTMK6wBHAmcAM4GngSGAbYOfMnD3S70KSIiIz0zuMWq0Z8KVxGCXgXw1sC+ya mYt66p8OTAd2zMz/rmUzga0yc4ueeh+lXD0/PDMv6nMsSykP2e6XmdfWsjUowfx3gc0z85mI2BB4 DLgH2CMzX611dwV+AlyemX881jgi4suUq/j//7l7+pxHCeq/k5nP1fLNKIH/gczcvZZNpgT8xcB2 mflELd8PuApYArwnM++p5TsC9wJfy8zp/fxeJK2eDPiSS3SkgYmI9YF9gB8AEyJio6EDuKZW23MF df/AULgHyMxfAWcBawF71eK9KVfUvz4U7mvdWcANwH4RsTxzwnuBTYFzh8J9bf9x4HvAbhGxaec9 Vw6F++q2+nrHULivbdwPPEt5+FeSJI3CgC8NzjaUB0+PpSzN6T2up1xln7iC+n5wlLIt6+vk+jrc EpfZlD8GNlmOMYzVfu9Yhszt/SEzF9b/nMdrPQtsMN7BSZK0ulhjVQ9AasjQLeFzKFfxhzNn5Qzl DWPJMpZ7212SpDEY8KXBeYRylT4y86ZxtjHeh2K2HaZsaGecRzuvO1Iebu21A/A8sKCPcYx0rrf9 y4dpv7eOJElaQVyiIw1IZj5FWct+WES8JnBHxLoRseYYzSyur8u6FGW7iNi3p683A18AXqxjgrJM 6CXgC/X8UN1dKOvz/z0zl/YxjpHO/RT4X+CIiHhbT/uTgEOAn2bm/GX8XJIkaRl5BV8arGmUB0Xv iojzKWvP1wN2Ag6sr73ry7tLTu4FXgCmRcTzlO0278nM+8bodzZwWUScQwnZBwHvA/52aF17Zj4d EV8CTgduiYjLKCH9KGAhcHyf4/hxrfOViLgUeAW4MTOfiohjKNtk3hERFwBrUrbJ/C3gL8f4DJIk aQC8gi8tn99YrpKZjwDvAS6mBPpvAH9Febj07/n1Epih93bf/zxwKCU0nw1cAnyqj3H8F/AZyi4+ pwGTgGMy85RO+2cAh1F20zmFsr/8TcD7M/PhfsaRmTcD/wDsTNkm9BLqEpzM/D7wMeAZ4GTKXvr3 A1My8/Y+Psdo3NNXkqQ+uA++NA7usyxJr0/Oz5JX8CVJkqSmGPAlSZKkhhjwJUmSpIa4i440ThHh AyySJOl1x4dspXGKiMMpu8hMzsx5Y1Qf7v1HAN8CzgX+A5hP+bKsw4DLM/NnfbQRwEnArMy8YlnH IEmvdxGxFWVXr77mxQH2uz5le9+bM/NHK6tfaRBcoiOtOnsCz2XmtMy8JDNvBN4FnAjs0mcbb6r1 P7GCxihJq9pWLNu8OCgb1n4/vJL7lZabAV9adTYGnhvhXL9bvLkVnKTVxcDnu4hYe1X0K61oBnxp wCJiy4i4KCLmR8RLEfFARPx1XU5DREyJiKXAFGDziFhaj8OA62ozF/SUnzRCP5MpX0QFcHhP/Zt7 6qwXEWdFxGN1LD+PiJMjYs1OWxfW924WEd+PiIX1+MeImDjQX5CkN6SIeGtEfDkiHqzzyfyIuCoi duvU+3BEXFfnkBci4s6IOKBTZ0qdcz4bEUdGxMO1zVkRMaWn3uGMMS9GxMSImBER/xMRL0fEnIg4 JSImdPqcExG3RsTvR8Qt9Vu6Z4zwWacAD9YfT+rp94KeOpvVuXNBHft9EXH0MG3NrGPbJiKujYhF EfFkRJzd5x8Y0jLzIVtpgCJia+B2YBHlW2yfBD5C+dbYrYCplG92/VPgBGAT4Kj69ttrveMo6/Jv reV3j9Ddk5T1+t8FbgHOq+UL6lgmADcC7wbOB2ZRbjV/CdgVOIDXugqYBxwP7FTHu1NEvC8zX+37 FzAz2h4AAAkaSURBVCGpKRGxFjAT2A34HvA1YB3gA8DvAXfVep8C/gm4jfLt3b8C/gT4t4g4JDMv 7TQ9tbbzLeBV4Gjgioh4Z2YuBH7EKPNiRGwI3FHbOA+YC7wXmE5Z0vMHPX0lsDllnruIMnc+O8JH vh/4IvBV4F/rAfBwT7+3Ue7EzqA8P/Vx4MyIeFdmHtXTVgJrAzfU3+GxwB7A5ynfcr7/CGOQxi8z PTw8xnEAhwNLgS16yq4Gfg68rVP39Fp3+56ymcC8Tr2P1nqH9jmGNWr97wxz7vP13DGd8jNr+f49 ZRfWsks7dY+s5VNX9e/bw8Nj1R3A39W54IhR6qwN/AL4l075mygh/DF+vbnHlNreXGDtnrq71PJp PWUjzovAN4FfAu/olP9Ffc8+PWVzatnBfX7mrWv9E4c5d1o998lO+Q9q+c49ZTNr2Vc6db9ay/dd 1f9/Pdo7XKIjDUjdcWEfygQ/ISI2GjqAa2q1PVfikA4AFvPaW9Cn9Zzv+nrn5/NqGx8b7NAkvcEc BMzJzPNGqbM3sAFwcWf+24By8WMSsH3nPRdn5gtDP2TZJec5yh3PUdVlj5+mLOF5odPn9bXaXp23 /TIzLxur7T4cADyUmZd3yk+vrx/vlCevnV/PqK/Orxo4l+hIg7MN5WGsY+vRlcDKXM8+GXg0M1/p LczM+RHxbD3f9UCn7isRMZdyG1nS6msbyhKT0WxXX7uhd0hSlrTM7imbO0y9Zyh/FIxlIrA+JeR/ eoT+unPunD7a7cdk4Nphymf3nO+1KDMX9BZk5hMRsRjnV60ABnxpcIZ2WjiHchV/OHNWzlAkaaD6 +dKcoTlwKmWp4nC6zxQtGaOtfvq7nBEelgWe6Pz8Yh/t9sMvEdLrmgFfGpxHKJN+ZOZN42xjWf/R GK3+o8AeETEhM18eKoyITYG31/Nd21PWyg7VnUC5EuWXvEirt4eAnSMiMnOkeeeh+rpwOebA4YzU 31OU5TxrDbi/sfqFMn/uMEz5Dj3ne60bEZtm5vyhgoiYRHk4eLi5WFoursGXBiQzn6Lcwj4sIrbt no+IdbvbUw5jcX3t5/Y0mbkEeIlym7rrSso/HtM65cf2nO/qbvF2BPBWyq4TklZf/wy8kzInjOQ6 4GnghLrrzm+IiI3H2few82JmLqXs2LNPRHxomP7eEhHrjLPPEfutfghsHRF/2NNfUHbeSfqbX6fX V+dXDZxX8KXBmkbZOu2uiDifsh5zPcqWkwfW13k99bu3oe8FXgCm1T2aFwH3ZOZ9o/T5E2DviJgO PA4syMybgW8DnwXOiIjtgZ8BHwQOBn6YmVcP09a2EXEl5aHgHSm32u+ubUlafZ0BfBI4p4bp/wTe AnwIuD4zZ2Tm4oj4HCV03x8R36XsnDOJspXmdpSdacayLPPi8ZTtf6+v/c0C1gK2Bf6IMu/eMp4P nJkLImIecHBEPEj54+WRzPwxcCpl3f+lETGDchV+f2Bf4OzMvL/T3DPAZyLit4E7gfcDhwDXZuY1 SIO2qrfx8fB4ox6UbTKX0LNNZi2fRNm6bS7wMjCf8g/MdGBCT72b6WyTWcsPBO6p713CMFu0derv SNmGbTFly7Wbes69HTiL8o/sy5R1sScDb+60cWHtaxLlSt3CelwCTFzVv2sPD49Vf1DuCJ5K2Qv+ Zcr69iuAd3fq7U7ZN/4pyh3GObXeQT11ptQ558+H6edROlv/jjYv1nnuVMoXU71U+70TOBFYv9Pu Lcv4mT9IuYjyIp0tiet8eSHlO0leAu4Djh6mjZmUCztbUy6eLKpjnEHPFqEeHoM8hvajlbQai4gL gUOBNbLc9pYkDUBEzAS2yswtVvVYtPpwDb6kIf61L0lSAwz4kob0sy2dJGnZOb9qpTLgS4Jy9d4r +JI0eM6vWulcgy9JkiQ1xCv4kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM+JIkSVJDDPiSJElS Qwz4kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM+JIkSVJD DPiSJElSQwz4kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM +JIkSVJDDPiSJElSQwz4kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM+JIkSVJDDPiSJElSQwz4 kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM+JIkSVJDDPiS JElSQwz4kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM+JIk SVJDDPiSJElSQwz4kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJ UkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM+JIkSVJDDPiSJElS Qwz4kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM+JIkSVJD DPiSJElSQwz4kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM +JIkSVJDDPiSJElSQwz4kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM+JIkSVJDDPiSJElSQwz4 kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM+JIkSVJDDPiS JElSQwz4kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM+JIk SVJDDPiSJElSQwz4kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJ UkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM+JIkSVJDDPiSJElS Qwz4kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM+JIkSVJDDPiSJElSQwz4kiRJUkMM+JIkSVJD /g8NfX/IA8ubvAAAAABJRU5ErkJggg== )

注释文本

text() 函数在 Axes 对象的指定位置添加文本,而 annotate() 则是对某一点添加注释文本,需要考虑两个位置:一是注释点的坐标 xy ,二是注释文本的位置坐标 xytext

In [4]:

fig = plt.figure()
ax = fig.add_subplot(111)

t = np.arange(0.0, 5.0, 0.01)
s = np.cos(2*np.pi*t)
line, = ax.plot(t, s, lw=2)

ax.annotate('local max', xy=(2, 1), xytext=(3, 1.5),
            arrowprops=dict(facecolor='black', shrink=0.05),
            )

ax.set_ylim(-2,2)
plt.show()

![]( AAALEgAACxIB0t1+/AAAIABJREFUeJztnXl8VOXVx38nCQlZ2GWRNS5gICwhICAoxCIK0rqU2kpb Fe1rbRGXt8unr7Z9wbe2fa21dWltFZfaqoivW8GFRTDgxiaEHZFNAdn3kIQkM+f948zlDnEmmczc Pef7+cxn7sw8c++5v7n3zPOc53nOQ8wMRVEUJbikuW2AoiiKYi/q6BVFUQKOOnpFUZSAo45eURQl 4KijVxRFCTjq6BVFUQJOSo6eiLoR0XtEtJ6I1hHRnXHKPUpEnxHRaiIamMoxFUVRlMaRkeL3awD8 JzOXEVEegE+IaD4zbzQKENGVAM5n5p5ENBTA3wAMS/G4iqIoSoKkVKNn5r3MXBbZLgewEUDnOsWu AvBcpMxSAK2JqGMqx1UURVESx7IYPRHlAxgIYGmdj7oA2Bn1eheArlYdV1EURakfSxx9JGzzCoC7 IjX7rxSp81rzLiiKojhEqjF6EFEzAK8CeJ6Z34hRZDeAblGvu0beq7sfdf6KoihJwMx1K9NnkOqo GwLwNIANzPxwnGKzANwYKT8MwFFm3herIDPrgxlTp0513QavPFQL1UK1qP+RCKnW6EcA+D6ANUS0 KvLevQC6Rxz3E8z8NhFdSURbAJwEcHOKx1QURVEaQUqOnpk/QAKtAmaekspxFEVRlOTRmbEepKSk xG0TPINqYaJamKgWjYMSjfHYDRGxV2xRFEXxC0QEtrMzVlEURfE+6ugVRVECjjp6RVGUgKOOXlEU JeCoo1cURQk46ugVRVECjjp6RVGUgKOOXlEUJeCoo1cURQk46ugVRVECjjp6RVGUgKOOXlEUJeCo o1cURQk46ugVRVECjjp6RfEReXl5lu5v2rRpeOihhyzdp+I91NErio+QZZq9uz/Fm6ijVxQfwsz4 +c9/jn79+qF///54+eWXT3/2wAMPoH///igqKsK9994LAJg+fTqGDBmCoqIifOtb30JlZWW9+580 aRImT56Miy66COeddx5KS0tx0003oU+fPrj5ZnPZ58mTJ+PCCy9E3759MW3aNADAsWPHUFBQgM2b NwMAJk6ciKefftpiBZRGYcEK5M8A2AdgbZzPSwAcA7Aq8vhVnHKsKEr95OXlMTPzK6+8wmPGjOFw OMz79u3j7t278549e/jtt9/m4cOHc2VlJTMzHz58mJmZDx06dHofv/rVr/ixxx5jZuZp06bxH//4 x68cZ9KkSTxx4kRmZv73v//NLVq04HXr1nE4HOZBgwZxWVnZGfuvra3lkpISXrNmDTMzz58/ny+6 6CKeMWMGjxs3zg4plAgR31mvn7aiRv8sgLENlFnEzAMjj/stOKaiNGk++OADfPe73wURoUOHDhg1 ahSWL1+OBQsW4JZbbkHz5s0BAG3atAEArF27Fpdccgn69++PF154ARs2bGjwGN/4xjcAAH379kWn Tp1QWFgIIkJhYSF27NgBAJg5cyYGDRqE4uJirF+//vR+L7vsMvTt2xdTpkzBU089ZYMCSmNI2dEz 8/sAjjRQTAOBimIhkXVCY34W6/1Jkybh8ccfx5o1azB16tQGQzcAkJmZCQBIS0tDVlbW6ffT0tIQ CoWwfft2PPTQQ1i4cCFWr16N8ePHo6qqCgAQDoexceNG5Obm4vDhw8mcomIhTsToGcBwIlpNRG8T UR8HjqkogeaSSy7BzJkzEQ6HceDAASxevBhDhw7FmDFj8Oyzz5525EeOSB2svLwcnTp1Qk1NDZ5/ /vnTnbDx/iwagplx4sQJ5ObmomXLlti3bx/eeeed0/v985//jMLCQrzwwgu4+eabUVtba8FZK8mS 4cAxVgLoxswVRDQOwBsAejlwXEUJHIYjvfbaa/Hxxx9jwIABICI8+OCD6NChA6644gqUlZVh8ODB yMzMxPjx43H//ffjN7/5DYYOHYr27dtj6NChKC8vP72/eCNvot+vW4aI0L9/fwwcOBAFBQXo1q0b Lr74YgDA5s2b8fTTT2P58uXIzc3FyJEjcf/995/urFWch5L9Rz9jJ0T5AGYzc78Eym4HMIiZD9d5 n6dOnXr6dUlJCUpKSlK2TVH8BDNj2bJlePnll/GHP/wB6enpbpukeIzS0lKUlpaefn3fffeBmesN j9vu6ImoI4D9zMxENATAy8ycH6McW2GLoviRgwcP4rnnnsNjjz2GgwcPIhQK4bXXXsO4cePcNk3x OJH+GnsdPRHNADAKwFmQYZZTATQDAGZ+gohuB/BjALUAKgD8hJmXxNiPOnqlSREKhTB//nw8+uij WLhwIdLS0s7oJL3iiiswZ84cFy1U/IAjjt4q1NErTYXt27fjySefxPTp01FdXY0TJ07ELJeVlYWd O3eiffv2Dluo+IlEHL3OjFUUB6iqqsKMGTMwdOhQ9OnTB3/6059w6NChuE7e4Pnnn3fIQiXIODHq RlGaLGVlZXj88cfx4osvgohOj3aJR7NmzZCRkYGePXvi7rvvxre//W2HLFWCjDp6RbGYo0eP4oUX XsAjjzyC3bt349SpUwiFQvV+p0WLFiAi3HzzzfjRj36EgoICh6xVmgLq6BXFAsLhMBYtWoTHHnsM 77zzDtLT03Hy5Ml6v9O8eXMwM4YNG4a7774b48ePR7NmzRyyWGlKqKNXlBTYvXs3nn76aTz++OM4 efJkg6EZIkJubi7y8vJw++2345ZbbkHnzp0dslZpqqijV5RGUlNTgzfffBN//vOfsWzZMhDR6Rwv 8cjJyUE4HMb48eNxxx13YOTIkZoLXnEMdfSKkiCbNm3C3/72N/zjH/84neulPtLT05GVlYVu3brh zjvvxPe+9z20atXKIWsVxUQdvaLUQ3l5OWbOnImHH34YW7duRU1NTYMJuvLy8sDM+N73vofbb78d /fv3d8haRYmNOnpFqQMzY8mSJfjLX/6C119/Henp6Q3G3jMzM5GWloaioiLcfffduPrqq0/nhFcU t1FHrygR9u/ffzrfzOHDh1FRUdFgGt+8vDxkZWXhtttuww9/+EP06NHDIWsVJXHU0StNmlAohLlz 5+KRRx7BokWLvpJvJhbZ2dkIh8MYPXo07rrrLowePVqzTCqeRh290iTZtm0bnnjiCUyfPh21tbUN dqympaUhOzsb7du3x5133okbb7wR7dq1c8haRUkNdfSKL2HmRg9PrKysxKuvvopHHnkE69atQzgc RnV1db3fycvLQygUwnXXXYcpU6Zg8ODBOixS8R3q6BVf8txzz6GkpAT5+fkNll25ciX++te/4qWX XkJaWlpC+WbS09NRUFCAu+++G9dddx1ycnIsslxRnEfTFCu+o7a2Fj169MBNN92E3/3udzHLHDly BM8//zweeeQR7NmzJ+F8M2lpafjBD36AH/3oR+jZs6cd5iuKpWg+eiWQ/Otf/8Ktt96K3Nxc7N+/ /3RHaDgcxnvvvYdHH30Uc+fORXp6OioqKurdl5Fv5uKLL8Zdd92FcePGISNDG7qKf1BHrwSOcDiM Hj16YNeuXWjRogVefvllFBYW4qmnnsLf//53VFRUJJxvpmXLlpgyZQpuvvlmdOrUyaEzUBRrScTR a9VF8RWvvPIKjhw5AgA4ceIErr/++tN5Zk6dOlXvd3NzcxEKhXDVVVfhjjvuwIgRI7RjVWkSaI1e 8Q3hcBg9e/bEtm3bEv5ORkYGmjVrhvz8fNx1112YOHEiWrZsaaOViuIsjtToiegZAOMB7GfmfnHK PApgHGRx8EnMvCrV4ypNj9mzZ2P//v0JlW3RogWYGTfccAMmT56Mvn372mydoniXlGv0RHQJgHIA /4zl6InoSgBTmPlKIhoK4BFmHhajnNbolbgwM/r06YNNmzbFLZOVlQUiQnFxMe6++25cddVVyMrK ctBKRXEeR2r0zPw+EeXXU+QqAM9Fyi4lotZE1JGZ96V6bKXpMHfuXHz++ecxP8vMzESLFi0wefJk /Md//Ae6d+/usHWK4m2c6IztAmBn1OtdALoC+Iqj37sXaKqDH0Ih4JVXgI8+Arp2BSZNAtq3d9sq d6ipAV5+GVi2DOjRQ7Q4ceIE2rRpEzOTZG1tLcaNG4f/+Z//ccdgG6muBmbMAFauBM49F7jpJqB1 a7etcoeqKuDFF4GyMqBXL9GiRQu3rXKHigrgySeBhOfxMXPKDwD5ANbG+Ww2gBFRr98FUByjHGdl TeUbbpjKU6dO5ffee4+bCkeOMI8axQyYj7ZtmRcvdtsy5zl4kHnYsDO16NCBeelS5nA4zKWlpXz1 1VdzVlYWZ2dnMwAGwNnZ2VxeXu62+Zaydy9zcfGZWnTuzLxqlduWOc/Oncx9+56pRY8ezOvXu22Z 87z44nvcrt1UBqZyTs5UFjfegI9uqEAijwYc/d8BXB/1ehOAjjHKMcCcm8u8erWtOnmK2lrmyy6T X6JTJ+bf/Ib50kvldcuWzJs2uW2hc1RXM48YIefetSvz/febr9u2Zd62zSx74MABfvDBB7lr166c l5fH6enp/Mwzz7hnvMVUVTEPHiznnp/P/NvfMg8ZIq87dmTetcttC52jvNx08j17Mv/ud+YfYNeu zPv2uW2hcxw7xtyrl5x7797Ms2axZxz9lQDejmwPA7AkTjn+/vfFon79mGtqbNXLM/zpT+bNu327 vFdbyzxhgrw/ZAhzKOSqiY7xm9+YN6/hyGpqmMePl/dHjWIOh8/8Tjgc5sWLF/O1117Lo0ePdtxm u7jnHjnnc881HdmpU8yjR8v748a5a5+T3HWXnPMFFzAfOiTvVVQwDx8u70+Y4K59TnLrrXLO/fuL 02d2yNEDmAHgSwDVkFj8LQBuA3BbVJm/ANgCYHWssE2kDJeXM59zjlgVoMpZXI4cYW7dWs539uwz Pzt6lLlLF/nspZfcsc9J9u2T1hzAvGDBmZ8dPMjcvr18NmtW/H0cOnSIw3X/CXzIzp3MWVlyvh99 dOZne/aY18y777pjn5Ns3cqckcGclsa8cuWZn33+uXnN1NUpiKxfz0zE3KwZ84YN5vuO1eiteESM 5eef59Pxt6oqC1XyIL/6lZzrpZfG/vzJJ+XzXr2C38L5yU/kXMePj/35ww+bNZmgt3Buu03O9dvf jv35734nnw8d+tUWTtC44QY510mTYn/+y1/K51/7mrN2uYHRyp88+cz3fenoa2uZCwvFsunTrZLI exw7xpyXV39tpLqa+bzzpMwLLzhrn5McPMjcvLmcZ7yOxspKCekAzK+/7qx9TrJ7t1mD3bgxdpkT J6SDGmCeN89Z+5xk61azBmuENesS3Sr+4ANHzXOU9evlHJs3l2skmkQcfVqCg3McIz0d+MUvZPvJ J921xU5mzADKy4GRI4GLLopdplkz4Oc/l+0ga/HPf8rQubFjgaKi2GWaNwf+8z9lO8haPPssUFsL XHMNUFAQu0xeHnDHHbIdZC2eekrG11x/PRBv2YHWrYEf/1i2g6yFcW433QR07pzEDhr6J3DqgUiN nlk6Wox/6bpxuaBgjBpoqKZ+7JgZhwziCJxwmLmgILGa+oEDzJmZUsv7/HNn7HOSUEhClgDz3Ln1 l921izk9XWr/e/c6Yp6jVFfLKLREaupbt5q13cOHnbHPSSoqmNu0ie8P4ccaPQBkZwM33CDb06e7 a4sdrFwpj7ZtgW9+s/6yLVtKjQYIphYffghs2iQT5caPr7/sWWcBEyZILe/pp52xz0nefRf4/HOp vV52Wf1lu3QRvWprgX/8wwnrnOWtt2QCZe/ewPDh9Zc991zRq6oKeP55Z+xzktdeA44cAQYNAgYO TG4fnnT0APCDH8jz//2fXMxBYsYMef7udyUk0RCGFjNnAuGwfXa5gaHFjTdKqKohDC1eekkcfpAw tJg0CUhL4M6M1iJoGFrccguQSCbppqJF0jRU5XfqgajQDbM06Xv2lObKwoWpNHy8RThsDiFNdOZr KGQOtVyyxF77nCQUYj77bDmvFSsS+05NDXO7dvKdtWvttc9JqqvN5nn00Ln6qKxkbtFCvrN1q732 OUlFhRmujNcJW5fjx80O/bqdlX7m2DEzXLlnT+wy8GvoBpB/8QkTZPvVV921xUrKyoDt24GOHRtu khqkpZkhniBp8fHHwJ49EqooLk7sOxkZ0lEJBEuL0lJpnvfuLY9EaN4c+PrXZTtIWsybB5w8KaGK BNZ+ByA5b664QrZff9020xznzTcl39HFF6eWB8yzjh4wHf1rrwUnZGHckNdeKyOMEiX6Ty8oIQtD i29+M7HmuUEQKwDGuRjnliiqhYlqER9PrzDFLP/oX3wBrFgh//B+p6gIWL1aai1jxiT+vVAIOPts 4MABYMOGxGt9XqZXL+Czz4APPgBGjEj8e9XVktnz+HFgxw7JcOlnmIFu3YDdu6WTvjEdbhUVQLt2 0hG5bx/QoYN9djpBKCSt3UOHpJP+ggsS/+7Ro3JdMMv3W7Wyz04nqK6WARsnT0onfbzs24nko/d0 jZ5IxlYDwJw57tpiBXv2iJPPyZHx840hPR24/HLZDoIW27aJk2/dGhg6tHHfzcwERo+W7blzrbfN adavFyffqVP8eQTxyMkBRo2S7XnzrLfNaT75RJz0OedIRaAxtG4tc1JCIWDBAnvsc5IPPxQnX1gY 38kniqcdPWDG3YJwQxs3YkkJkMzCR8afXhC0MM7hsssk7t5YjOsiCH96xjlcfnnjQlgGQdTiiitS 0yJI94hx36eC5x396NFSm/3oI+DYMbetSQ3jIk72hzNq9IsWAZWV1tjkFqlqYdzQCxbIQiV+JtUb 2vjevHn+78uySos5c/zfl5XqPRKN5x19q1Zmc2zhQretSZ5wGJg/X7YNJ9VYOnSQ0SlVVcDixdbZ 5jQ1NeZvmawW+fkSvz1+HFiyxDLTHKeiQn5Losb12URTUCAx/gMHgFWrrLXPSY4eld8yIwO49NLk 9jFwoMTpv/gC+PRTa+1zkr17JcybnS0jblLF844eMG+A0lJXzUiJdesk9ti9O9CzZ/L7CYIWn3wi eX4KCmTZxGQJghYffyydbgMHyszfZIj+k/CzFu+/LxWiYcNkRngypKWZ/Td+1mLRInkeOTKxSZUN 4QtHb3Q2+bkWa9g+alRysUeDoGmRCqqFiWpholp8FV84+iFDZKTF6tXSvPMjxg/X2NE2dRk+XGot y5dLs9+PWKXFJZfI80cf+TdOb5UWxveNWrEfsVqLxYv9G6e3SgsDXzj67GzgwgvlR/vwQ7etaTzM 5g9nOKdkadUKGDBAHNvSpanb5jShkIybB1LXomNHidNXVMj4c79x6pTZv5BqHLZHD4nTHzkiwzX9 Rnm5hPTS0+On7U6U3r1lbsHu3TIL3W8cOiSh3qwsYPBga/bpC0cPnPkv7Tc++8yczNLYscGx8LMW a9fK6Kn8fHFMqeJnLVaskI71wsLk4/MGRP7W4uOPpRJQXCzpDFKByKxE+FELoyI0bFhyw7BjoY7e AaKbYanE5w2CooUVqBYmqoWJanEmKTt6IhpLRJuI6DMi+kWMz0uI6BgRrYo8fpXMcYzY9IoVMlvM T1j9wxm1FWPEhp+IHk1gBdGx6VDImn06hZ3OzW+xabu0MK43P2GHo081tXA6gC0A8gE0A1AGoHed MiUAZiWwrwZTdg4aJGlI33030SSf3sBYNaiszLp99u7N9a4360XCYeazzhK7N2+2br926Gs3NTVm iuFdu6zZZzjM3L699fraTWUlc1aW2H3okDX7jNZ3505r9ukEx4/LesEZGczl5Yl9Bw6kKR4CYAsz 72DmGgAvAbg6RjkLAhZmTdZPHbK7d0tColatgL59rduvH7X47DPg4EHpRD3/fOv260ct1q0DTpyQ 1ZG6dLFmn9GxaT9psXKldEz37StJvKwgI8NMA/7RR9bs0wmWLpVRU8XFQG6udftN1dF3AbAz6vWu yHvRMIDhRLSaiN4moj7JHmzYMHn202gTw9YhQxqXlrgh/KzFsGHW9FUY+F0LK1EtTFQLkyTSSZ1B IpHAlQC6MXMFEY0D8AaAmGNPpk2bdnq7pKQEJSUlZ3xuZDlculRikFY6C7swfrjGZmhsiGgt/IJq YaJamKgWJoloUVpaitLGTvttKLZT3wPAMABzol7fA+AXDXxnO4C2Md5vMBYVDjN36CBxty1bEotf uc2oUWLv7NnW7jcUYm7ZUvb95ZfW7tsuBg8WexcssHa/p06ZMd7Dh63dt1306WPP0pDl5czp6fI4 edLafdtFfr5osWaNtfs9eFD227y5LNXodZL1b3AgRr8CQE8iyieiTADfATArugARdSSSujcRDYEs dnI4mYMR+etfOhSSUUKAhG6sJC1NJpEB/tCiqkpmNhNZNwnEIDPTXIpw+XJr920Hx48DGzfKYuiN zT/fELm5EusOhfwxiWz/flk8JjcX6JN0UDc27dpJX1BVlczf8Dqffy56tGsnfTdWkpKjZ+ZaAFMA zAWwAcBMZt5IRLcR0W2RYt8CsJaIygA8DOD6VI5pOEw/OLf162UoaH6+PSv/+EmLVatkNm/v3skn rKoPP2mxfLmEHouKrJsQE42ftDBsHDzY2j4sAz9qMWSI9WHplMfRM/M7zHwBM5/PzL+PvPcEMz8R 2f4rM/dl5iJmHs7MKSWV9VON3q7Yo4FqYaJamKgWJqqF4JuZsQZGuGLVKhmS5WWcuoiXL/f+ZKFl y+TZbi2WLfP+ZCEntfA6Tt0jTV0L3zn61q0lj3l1tcR8vYzdF3GnTpLfvrxcYr5exm4tzjlH8sUc OCAxX6/CbL8WvXsDeXkS8923z55jWEE4bP+fXlGR9OFs2uTtFepqasw+Fav78wAfOnrAH82x8nKJ 0WdkyKISduEHLQ4elMXAc3KsnTQWjV866nftktWD2ra1dtJYNOnp/uio37xZOqa7dLFu0lhdsrLE 2TN7u6N+7VrpNO7Z07pJY9H40tEbF7GXRxWUlcnF1bevpFm2Cz9oYdhWVJTcQuCJ4gctPvlEngcN snceiJ+0sHoUVl1UC586emMonZd/OGPtTsNWu1AtTPyghWGbaqHXRTR2a+FLRz9ggIwjX78eqKx0 25rYOHVDG2Gh1auB2lp7j5Usbjg3r3bIOu3cjJqiF3H6umjKWvjS0efkSIdTKOTdiRBOXcRt20pH ZGWldDh5Eae06NxZEqYdOeLdDlmntDjvPFnA48svpU/AazA7p0VhoXTIbtnizQ7Z2lpzYIld/Xm+ dPSAt5tjVVXS2khLA/r3t/94Xtbi2DG5wTIzrZ/5WBcib2uxd6843pYtrZ/5WJe0NFMLoxXhJbZv l2ujY0fg7LPtPVazZuZ9WFZm77GSYdMm8RnnnAO0aWPPMdTR28DatdLaKCiwNtVoPLyshXFj9e8v N5zdeLmZbjjcgQPFEduNl7WIrs07kZzQy/eIEy0b3zr6QYPk2esXsROoFiaGFk31ho6mqTu3aJr6 PeJbR28kg1q71nvL6Tl9ERtxvVWrZBKKl3DTuXmtQ1YdvYlqYaKOvh5atAB69ZIZZevXu23NmTh9 EXfoAHTtKgnUPvvMmWMmitNadO8uHdQHDsjkJC9haGHnBLpoLrhABi58/jlw6JAzx0yE6I5Yp7To 21fmcGza5K01p8PhM0N6duFbRw94szlWUwOsWSPbVqegrQ8valFRITdWejrQr58zxyTyZvjm8GEZ CZSdLQ7YCdLTzWvQS1rs3i1/xK1bS2ZXJ2jeXJw9s7c6ZLdskVn0XbpIx7Rd+NrRe7E5tnGjhJLO P1/WiXUKL2qxZo3UWAoL5UZzCi9qYdTaBgywd3ZwXbyshVMdsQZe18JO1NFbjNOhCgPVwsSLo03c 0sKLLT23r4umeI8EwtF7aVao2ze0lzohvaCFV1DnZqLXhYk6+gRo3VomnlRVeSdNr9OdTAZnny1p i48dk0yRXsAtLc49V8Jme/bIwwu45dx695YMjlu3AkePOnvseLilRf/+3kqd4mSntK8dPeCtGkso ZHb0OO3cAG9pceoUsG6dxGAHDHD22ESm/l7Q4vhxScnbrJn0VzhJ9KxQL8yQ3b9fRkPl5UlKXifx WuqUL76QTvqzzpJRc3bie0fvpebYZ5/J0K1u3YD27Z0/vpe0WL9eRiD16iVDYZ3GS1oYeUz69ZNU EE7jJS2MP5uiImdmB9fFS1o4OTs4ZamJaCwRbSKiz4joF3HKPBr5fDURWVrX9VLHm1tNUgPVwsRL Wjg1siIeXtJCrwsTJ7VIydETUTqAvwAYC6APgIlE1LtOmSsBnM/MPQH8EMDfUjlmXYwmelmZ+7NC vXIRr1rlfoesl7RwG7f6KgxUCxMvauF5Rw9gCIAtzLyDmWsAvATg6jplrgLwHAAw81IArYnIsqkB 7dtLqMQLs0Lddm7dugHt2snSfW7PCnVbi549JaHcF1+IHm7ithbGrNBPP5XJOW7ithZeSp3iJ0ff BcDOqNe7Iu81VMbSrgcvdEIyu99E90qa3tpac3awWzW36FmhbtbeKiuBDRucS1kdi6wsc1ao0V/g BkePyoiwrCzpFHUDI3VKdbX8Lm6xZ4+krW7Vyv6U1QCQ6hy9RAMEdbsaYn5v2rRpp7dLSkpQUlKS 0M6Li4F//1uc28SJCVpkMTt2yIXsRH7t+iguBubPFy2urtu2cohPPxUHZ2d+7UQoLgY+/FC0GDPG HRuMlNWFhTLqwy2KiyW8uXIlMGKEOzY4nbI6HsXFMgpq5Upn05REE53fprEdsaWlpSgtLW3Ud1J1 9LsBdIt63Q1SY6+vTNfIe18h2tE3Bi/UYp3Orx0Pr2nhJqqFSXEx8MwzqoVx/JdeEntuucUdG1LR om4l+L777mvwO6mGblYA6ElE+USUCeA7AGbVKTMLwI0AQETDABxl5n0pHvcMosdMu9UJ6ZWL2Avj x1ULE69ooX96Jk3xukjJ0TNzLYApAOYC2ABgJjNvJKLbiOi2SJm3AWwjoi0AngAwOUWbv0LnzpKq 9+hR99aAFVdVAAAXIUlEQVQKdXs0gYEX1gr1ihZ9+ri/VqhXtIieFVpV5Y4NXtEieqReKOSODU5r kfI4emZ+h5kvYObzmfn3kfeeYOYnospMiXw+gJkt/x91uxOS2RyXa0zIcIu0tDMXInGa6Pzabtfc omeFutEJWV1tzsB027nl5srSlqGQzFh2mpMnJWV1RoZzKavj0a4d0KOH9CN9+qnzxz90SNYIyMlx LmW172fGGrjp6I382m3ayAXkNm5qsWULcOKE/fm1E8VNLdavF2ffs6csCO42bmpRViYVIqdTVsfD TS2MYxYVyegwJ1BHbwFe6Yg18IoWXkC1MHEzNu01LZradRFIR+90h6zxw7kdtjHwwkWsWqgW0agW Jm5oERhHn58vaYv373c+Na0Rn/dKbeWCC2TJuh07gCNHnD2217To10+axxs3ytKGTuK1WqwxZnzN Gkk45yRe0yI6FYLTqVPcuEcC4+jd7JD12kWckWGmBnayQzY6v7ZXtGjeXOLC4bA5W9cJamvNDmC3 O2INWreWUVmnTjm7fkNlpfRXpKU5n7I6Hp06ycTG48eB7dudO+7Ro7I2gNOzgwPj6AF3HP3evTKU sUULuYm8ghtaGLODO3SQIa9ewQ0tNm0yZwe3bevccRvCDS2M2cG9e7s7O7gubmjh1uzgQDl6Nzqb omuwbuTXjocbWkQPMfVCp7SB29eFl3DDuXlVC7fvESfxkGtKHb2ITVQLE9XCRLUwaUpaBMrRG6lp d+6Uce1O4NWLuLBQmoabN8u4difwqhYDBkgLY90651LTemUCXV3cWL/Bq1q4MVJPHb0FuJGa1qsX sdOpab00O7guRmramhrpFLSb6NnBXumINXB6/Ybo2cFuZYqMR/fu0n/i1PoNJ07ITNxmzeTedJJA OXrA2ebYwYOysEVOjjgSr+GkFrt2iR5t28oN5DWc1MJYO7hrV+mY9hpOauH22sH14fRIvdWrpULU t69UxJxEHX0KRC907NRU5sbgpBZemx1cFye18GrLxkC1MHHrHnEadfQp4LXJQXVRLUyayg2dCKqF SVO5RwLn6Hv3lmbR1q0ypttOvDatuy5GatoNG2RMt514XQsjVr56tUxmshM/OTe7OyH9pIXduHmP BM7RR6emNSYn2IXXL+KcHPnjC4XMDjG78LoWbdrI5CW7U9NGzw726p/e2Wc7s35D9Oxgr14XTq3f UFEhFa70dHfWDg6cowfM2pvRVLIDt6YyNxYntNizRx4tWzqz0HGyOKHFtm2yyInbawfXR3QnpJ1a bNwoi5ycc46kX/AiaWnmaCA7a/Vr1shorIICyUPlNIF09BdeKM/Lltl3DGPfAwe6u9BxQzihxdKl 8jx4sLdmB9fFSS2GDLHvGFagWpg0BS08fFsmz9Ch8myIawfGvo1jeRXVwkS1MFEtTJqCFoF09H36 AHl5slzXPkuXITdx+4dLlKIiWTd10yb71k31ixaDB0vYYvVq+9ZN9YsWRs1yxQr7Oqf9ooVh37Jl 9nVOu61F0o6eiNoS0Xwi2kxE84goZhSOiHYQ0RoiWkVENjaOTNLT5aYG7PmXZnb/h0uUrCxx9szA 8uXW7z8UMvfrdS1atJBKQE2NPTOnT50y92tcf16lfXuJnVdU2DNbuLxc9puR4b3ZwXXp3l36VA4f lqUwrebAAem7yclxfkasQSo1+v8CMJ+ZewFYEHkdCwZQwswDmdmxCJWdzbHt22UW6Flnyc3idezU YuNGuam7d5cc317HTi1Wr5Yp/wUF3u18jMZOLVaskM7H/v3d6XxsDET2amHE/gcNkj8+N0jF0V8F 4LnI9nMArqmnrONzJe384aJr816cBVoXp7TwA6qFiWphEnQtUnH0HZnZiIDvA9AxTjkG8C4RrSCi W1M4XqMwRF2+3PosfcY/tN8uYjtikH7Vws6am9+0sGO0iRecW2OwUwsvXBf1NiSIaD6AWA3yX0a/ YGYmonguZAQz7yGi9gDmE9EmZn4/VsFp06ad3i4pKUFJSUl95tVL586SVGrXLpkgY+VYd79dxOed B7RrJx3TX3wB9Ohh3b79pkVhocRKt2+X2Gn79tbt229aGEOD16+XzIpWJh3zmxYXXiit87Iy6Wux KukYs/WOvrS0FKWlpY01hJN6ANgEoFNk+2wAmxL4zlQAP43zGVvNhAnMAPOzz1q3z1OnmLOyZL9H jli3X7sZN05snjnTun2WlzOnp8vj5Enr9ms3I0eKFrNnW7fPQ4dkn82bM1dXW7dfuxk8WOxeuNC6 fe7cKfts1Yo5FLJuv3bTp4/YvWSJdfv89FPZ59lnM4fD1u03mojvrNf3phK6mQXgpsj2TQDeqFuA iHKIqEVkOxfA5QBsnoxvctFF8vzhh9btc+VK+cf3S4ebgR1aLF0qo24GDPDWWqANYYcWH30kz4MH e3sCXV3s0MLY19Ch3p5AVxc7tRg2zN3+vFR+hv8FMIaINgP4WuQ1iKgzEb0VKdMJwPtEVAZgKYA3 mXleKgY3hpEj5XnxYuv2aexr1Cjr9ukEqoWJamGiWpgEWYukB/sw82EAl8V4/0sA4yPb2wC4tq7M wIGytODmzZKwyIrhf8YPZ1wUfmHIEJk4tXq15OmxojXiVy1GjJDa1fLlMo7citaIX7W45BJ5/ugj mV9gRWvEr1oY9r7/vgzgsKI14hUtfNSwajwZGcDw4bL9fszu38YRCgEffCDbxg3iF7KzpcOJ2Zqm aXU18PHHsn3xxanvz0latZJwU02NNaNvysslOVhamtn89wsdO8rqTydPWjOJ7NAhWZs3K8vMIeMX evSQARyHD0umyVTZtUsmSrVs6U7GymgC7egBa5tja9dKGoH8fFl3029YqcWKFZJGoE8fmTjmN6zU YskSSSNQXOy95fISwUotjIrQ0KHOL5eXKkTWamFULkeMcH8FOnX0jcArzbBkUS1MVAsT1cIkqFoE 3tEbsem1a6VJlgpe+uGSYfhwCS+sWCFN9VTwuxZG6O3jjyUMlQp+16JubDoVgqLF4sWpTy70khaB d/TNm0szMtXYNLO3frhkaNlSOqhrayXckCx+7qsw6NBBhshWVqa2+EZVlaml3/oqDHr0kFxFR4+m thLZiRMy/Dg93X99FQYFBRKK3LNHFhZKlgMHJM7fvLk3EtwF3tED5tCmhQuT38eGDfLjdeoEnH++ NXa5gRVarFwpN/W550rnlV+xQoslS2ReRd++MvvYr1ihhdEiGDRI0oT7ESJrtFi0SJ4vukgiCm7T JBz9mDHyPHdu8vuYM0eeL7/cH4nM4mG1Fn5GtTBRLUyCqEWTcPQXXSSjITZulFwvyWD86FdcYZ1d bjBypIyGWLlSWijJEBQtRo+WMMPHHwPHjye3D0OLsWOts8sNDIe0aJGEs5IhKFoY1/W778oQ3MbC 7L17pEk4+mbN5KYGkvuXrqiQ+DyR+W/vV3JypGnKDMyf3/jvHzkijjEjA/ja16y3z0lat5ap6bW1 yTXT9+6VJFjZ2f7tqzDo2FH6b6qqkptzsn27TExs1co/iczikZ8PXHCB/PknM89i40YZQ9+xo8zX 8AJNwtED5j+r0aRqDIsWSRx20CBrsx26RSpaLFggcdjhw6Vz1+8Ytc9ktJgXSeZRUiKdbn4nFS2M CtRll7m3uIaVpHKPRIdtvJLrxyNm2I9xEc+b1/j1QmfNOnMffmfcOHl+663GN02DqsXs2Y0fWhhU LWbNavzQwiBr0Vg8qUVD6S2desCGNMV1KS6WlKH//nfi36mtZe7QQb63apV9tjlJOMxcUCDnNH9+ 4t87dUpSzwKSfjUIhMPM3bvLOX34YeLfKy9nzs6W733xhX32OUmy1/qRI8zNmjGnpTHv32+ffU5S VZXctb53LzMRc2Ym89Gj9tkXDWxOU+w7JkyQ51deSfw7H34I7N8vQwm9Em9LFSJTi1dfTfx7CxZI Coi+fSU/ShBIVos5c6TTcuhQf6bDiEV6OnDttbLdGC1mz5aW4ahRwQhtAjJg4RvfkO3GaPHGG9Ia GjNG+iu8QpN09LNmJT4b0viRJ0zw97DKuhhavP66TIBKhGgtgkS0o080ZBF0LRpTGQq6Fo1x9J7V oqEqv1MPOBC6YWbu10+aY6+91nDZU6fMpuzSpfbb5iThMPN558m5zZnTcPmTJ5lbt5bya9fab5+T hELMnTvLuS1e3HD5o0eZc3Kk/Nat9tvnJNXVzO3aybmtWNFw+f37JUyRlsa8e7f99jlJRQVzXp5o sWFDw+V37RIdMjKYDx603z4DaOjmq9x8szw/+WTDZWfNkrBNYaH/Uq42BFHjtHjlFZkif+GFEroJ EmlpwKRJsp2IFi++KENuS0okpBckmjUDbrhBthPR4p//lNbx2LGyTnOQyM4GJk6U7enTGy7/zDPS oX/NNR6cJd3QP4FTDzhUoz94UGogRMw7dtRf9vLL5d/8kUccMc1xdu+W9V4zMpj37Km/7MUXixbT pztjm9Ns2ybnl5Ul67/GIxxmLiqSsi++6Jx9TrJ+vZxfXh7ziRPxy4XDzBdcIGXfeMM5+5xk+XI5 v3btmCsr45errWXu0UPKzpvnmHnMnFiN3nUHf9oQhxw9M/N3vytn/rOfxS+zYQOfXuy5vhvf71xz jZznf/93/DKffJLYje93jD/2//3f+GXefz+xG9/vjBgh5/noo/HLzJ3Lpxe+rqlxzjYnCYeZBw6U 83z66fjlXn9dypxzjvMLoqujj4PxL52dzfzll7HLfOtbUubHP3bMLFdYvFjOs0WL+HHFK6+UMj/9 qbO2Oc0778h5tm3LfOzYVz8Ph5lHjZIyv/614+Y5yquvynl26iT9M3UJh5kvvFDK/P73ztvnJP/6 l5xnfr7029UlFDL7/ur7Y7QLWx09gOsArAcQAlBcT7mxADYB+AzAL+opZ7McZ3LttXL2kyd/9bMV K8zafNA6mGJxxRXxWzhGDTYvLzhjpOMRDpshqlgtHKMG26aNjB0PMuGwOe/kgQe++rlRg+3YUeYU BJnaWuY+feR8H3vsq5+/8IJ81q2bjL93GrsdfQGAXgDei+foAaQD2AIgH0AzAGUAescpa7sg0axd Kz3kRMyLFpnvV1SYMdig12ANjBZORgbzkiXm+ydOMPfu3TRqsAaLFsn5ZmYyl5WZ7x89ynzuuU2j BmswZ46cb04O88aN5vsHDjB36cKB7r+qy2uvyfm2bHnmSKs9e8yReU895Y5tjoRuGnD0FwGYE/X6 vwD8V5yytooRi3vu4dNN9blzmXfuZB47Vt4799xgx6Prctddct4dOjC/9550VF96qbxXUCB/gE2F W2+V8+7cmfmDD+TGNmLWRUWxm+9BxejP6tFDhhhv3sw8eLC8N2xYcGPzdQmHzSjA+eczr1wpndb9 +8t7l17qfGzewAuO/lsApke9/j6Ax+KUtVWMWNTUMF91lagQ/WjbNnhjxRvi1CmzMzL60aFDcNId JEplJfPIkV/VoksX5u3b3bbOWcrLmYcO/aoW+flNI6wZzdGjZms/+tGzJ/O+fe7ZlYijrzfPHBHN B9Apxkf3MvPs+r4bIcF5hsK0adNOb5eUlKCkpKQxX280GRkyk+2BB4C//11S8I4ZAzz0UPDGRzdE ZqZMZf/tb2XM8IkTMjb6oYdkmbmmRPPmko3xvvuAZ5+VMfNf/zrwxz8Gb6x4Q+TmSgrnX/8a+Ne/ JIvrNdcADz4oyzE2JVq1knTl994LzJghM8onTAD+8AegbVvn7CgtLUVpaWmjvkPyh5A8RPQegJ8y 88oYnw0DMI2Zx0Ze3wMgzMwPxCjLqdqiKIrS1CAiMHO9CVqsmhkb7yArAPQkonwiygTwHQBJJP5U FEVRkiVpR09E1xLRTgDDALxFRO9E3u9MRG8BADPXApgCYC6ADQBmMvPG1M1WFEVREiXl0I1VaOhG URSl8TgZulEURVE8ijp6RVGUgKOOXlEUJeCoo1cURQk46ugVRVECjjp6RVGUgKOOXlEUJeCoo1cU RQk46ugVRVECjjp6RVGUgKOOXlEUJeCoo1cURQk46ugVRVECjjp6RVGUgKOOXlEUJeCoo1cURQk4 6ugVRVECjjp6RVGUgJPKmrHXEdF6IgoRUXE95XYQ0RoiWkVEy5I9nqIoipIcGSl8dy2AawE80UA5 BlDCzIdTOJaiKIqSJEk7embeBMjCtAmQUCFFURTFepyI0TOAd4loBRHd6sDxFEVRlCjqrdET0XwA nWJ8dC8zz07wGCOYeQ8RtQcwn4g2MfP7jTVUURRFSY56HT0zj0n1AMy8J/J8gIheBzAEQExHP23a tNPbJSUlKCkpSfXwiqIogaK0tBSlpaWN+g4xc0oHJaL3APyMmT+J8VkOgHRmPkFEuQDmAbiPmefF KMup2qIoitLUICIwc739oKkMr7yWiHYCGAbgLSJ6J/J+ZyJ6K1KsE4D3iagMwFIAb8Zy8oqiKIp9 pFyjtwqt0SuKojQeW2v0iqIoij9QR68oihJw1NEriqIEHHX0iqIoAUcdvaIoSsBRR68oihJw1NEr iqIEHHX0iqIoAUcdvaIoSsBRR68oihJw1NEriqIEHHX0iqIoAUcdvaIoSsBRR68oihJw1NEriqIE HHX0iqIoAUcdvaIoSsBRR68oihJw1NEriqIEnFQWB3+QiDYS0Woieo2IWsUpN5aINhHRZ0T0i+RN VRRFUZIhlRr9PACFzDwAwGYA99QtQETpAP4CYCyAPgAmElHvFI7ZJCgtLXXbBM+gWpioFiaqReNI 2tEz83xmDkdeLgXQNUaxIQC2MPMOZq4B8BKAq5M9ZlNBL2IT1cJEtTBRLRqHVTH6WwC8HeP9LgB2 Rr3eFXlPURRFcYiM+j4kovkAOsX46F5mnh0p80sA1cz8YoxynLqJiqIoSioQc/K+mIgmAbgVwGhm rorx+TAA05h5bOT1PQDCzPxAjLL6p6AoipIEzEz1fV5vjb4+iGgsgJ8DGBXLyUdYAaAnEeUD+BLA dwBMTMZQRVEUJTlSidE/BiAPwHwiWkVEjwMAEXUmorcAgJlrAUwBMBfABgAzmXljijYriqIojSCl 0I2iKIrifVyfGasTqkyI6Bki2kdEa922xU2IqBsRvUdE64loHRHd6bZNbkFEzYloKRGVEdEGIvq9 2za5DRGlR6IIs922xU2IaAcRrYlosazesm7W6CMTqj4FcBmA3QCWA5jYVMM7RHQJgHIA/2Tmfm7b 4xZE1AlAJ2YuI6I8AJ8AuKYJXxc5zFxBRBkAPgDwM2b+wG273IKIfgJgEIAWzHyV2/a4BRFtBzCI mQ83VNbtGr1OqIqCmd8HcMRtO9yGmfcyc1lkuxzARgCd3bXKPZi5IrKZCSAdQIM3dlAhoq4ArgTw FAAdwJGgBm47ep1QpdRLZMTWQMjs6yYJEaURURmAfQDeY+YNbtvkIn+GjPYLN1SwCcAA3iWiFUR0 a30F3Xb02hOsxCUStnkFwF2Rmn2ThJnDzFwESTMykohKXDbJFYjo6wD2M/MqaG0eAEYw80AA4wDc Hgn9xsRtR78bQLeo190gtXqliUNEzQC8CuB5Zn7DbXu8ADMfA/AWgMFu2+ISwwFcFYlNzwDwNSL6 p8s2uQYz74k8HwDwOiQUHhO3Hf3pCVVElAmZUDXLZZsUlyEiAvA0gA3M/LDb9rgJEZ1FRK0j29kA xgBY5a5V7sDM9zJzN2Y+B8D1ABYy841u2+UGRJRDRC0i27kALgcQd7Seq45eJ1SdCRHNAPARgF5E tJOIbnbbJpcYAeD7AC6NDB1bFZmJ3RQ5G8DCSIx+KYDZzLzAZZu8QlMO/XYE8H7UdfEmM8+LV1gn TCmKogQct0M3iqIois2oo1cURQk46ugVRVECjjp6RVGUgKOOXlEUJeCoo1cURQk46ugVRVECjjp6 RVGUgPP/Qde6gvF4TtQAAAAASUVORK5CYII= )

在上面的例子中,两个左边使用的都是原始数据的坐标系,不过我们还可以通过 xycoordstextcoords 来设置坐标系(默认是 'data'

参数 坐标系
figure points points from the lower left corner of the figure
figure pixels pixels from the lower left corner of the figure
figure fraction 0,0 is lower left of figure and 1,1 is upper right
axes points points from lower left corner of axes
axes pixels pixels from lower left corner of axes
axes fraction 0,0 is lower left of axes and 1,1 is upper right
data use the axes data coordinate system

使用一个不同的坐标系:

In [5]:

fig = plt.figure()
ax = fig.add_subplot(111)

t = np.arange(0.0, 5.0, 0.01)
s = np.cos(2*np.pi*t)
line, = ax.plot(t, s, lw=2)

ax.annotate('local max', xy=(3, 1),  xycoords='data',
            xytext=(0.8, 0.95), textcoords='axes fraction',
            arrowprops=dict(facecolor='black', shrink=0.05),
            horizontalalignment='right', verticalalignment='top',
            )

ax.set_ylim(-2,2)
plt.show()

![]( AAALEgAACxIB0t1+/AAAIABJREFUeJztnXl0HNWV/79XkrV6w6vwKox3eZFl4xVsATaYNRAzSeCE YJhDSPiRyZkkHAaSDM5AEpjEkwQmk7APCcTAsNosXjDINtjIFra8SnjBO7bxJtmyJGvp+/vjdrla cktqddeu+zmnT1dXva669e2q26/ue+8+YmYoiqIowSXJbQMURVEUe1FHryiKEnDU0SuKogQcdfSK oigBRx29oihKwFFHryiKEnAScvRE1J+IPiairUS0hYj+pZlyTxDRDiLaSETjEjmmoiiK0jZSEvx+ HYB/ZeYSIuoI4HMiWsbMpUYBIroWwGBmHkJEkwD8BcDkBI+rKIqixEhCNXpmPszMJeHlSgClAPo0 KXYjgBfDZYoAdCWi3okcV1EURYkdy2L0RJQDYByAoiab+gLYH/H5AIB+Vh1XURRFaRlLHH04bPM6 gB+Ha/bnFWnyWfMuKIqiOESiMXoQUQcAbwB4iZnfjlLkIID+EZ/7hdc13Y86f0VRlDhg5qaV6UYk 2uuGADwHYBsz/7GZYgsBfC9cfjKAcmY+Eq0gM+uLGQ8//LDrNnjlpVqoFqpFy69YSLRGPw3AdwFs IqIN4XUPARgQdtxPMfP7RHQtEe0EcAbAnQkeU1EURWkDCTl6Zv4EMTwVMPN9iRxHURRFiR8dGetB CgoK3DbBM6gWJqqFiWrRNijWGI/dEBF7xRZFURS/QERgOxtjFUVRFO+jjl5RFCXgqKNXFEUJOOro FUVRAo46ekVRlICjjl5R2ikdO3a0dH/z5s3D/PnzLd2nYg3q6BWlnSIZTLy7P8U61NErSjuHmXH/ /fdj9OjRGDNmDF577bVz2x5//HGMGTMGeXl5eOihhwAAzzzzDCZOnIi8vDzccsstqK6ubnH/c+fO xb333ospU6bg4osvRmFhIe644w6MHDkSd95pZkS59957cckll2DUqFGYN28eAKCiogLDhw/H9u3b AQC33nornnvuOYsVaAe4nZAnIjEPK4riHB07dmRm5tdff51nzZrFoVCIjxw5wgMGDOBDhw7x+++/ z1OnTuXq6mpmZj5x4gQzMx8/fvzcPn7xi1/wk08+yczM8+bN49///vfnHWfu3Ll86623MjPzO++8 w506deItW7ZwKBTi8ePHc0lJSaP919fXc0FBAW/atImZmZctW8ZTpkzhBQsW8DXXXGOHFL4m7Dtb 9K9ao1eUds4nn3yC2267DUSEXr16YcaMGVi3bh2WL1+Ou+66C+np6QCACy64AACwefNmXHbZZRgz ZgxefvllbNu2rdVj3HDDDQCAUaNGITs7G7m5uSAi5ObmYs+ePQCAV199FePHj0d+fj62bt16br8z Z87EqFGjcN999+HZZ5+1QYHgk3A+ekVR/E14CH3UbdHWz507FwsXLsTo0aPx4osvorCwsNVjpKam AgCSkpKQlpZ2bn1SUhIaGhqwe/duzJ8/H8XFxejSpQvuvPNO1NTUAABCoRBKS0uRlZWFEydOoE+f prOVKq2hNXpFaedcdtllePXVVxEKhXD06FGsXLkSkyZNwqxZs/DCCy+ci8GfPHkSAFBZWYns7GzU 1dXhpZdeOtcI29yfRWswM06fPo2srCx07twZR44cwQcffHBuv3/4wx+Qm5uLl19+GXfeeSfq6+st OOv2hdboFaWdYjjSm2++GWvWrMHYsWNBRPjd736HXr164eqrr0ZJSQkmTJiA1NRUXHfddXj00Ufx yCOPYNKkSejZsycmTZqEysrKc/trrudN5PqmZYgIY8aMwbhx4zB8+HD0798fl156KQBg+/bteO65 57Bu3TpkZWVh+vTpePTRR8811iqxodkrFUVRfIxmr1QUBQBw9uzZuEMriv9RR68o7YCf/OQnyMvL w+rVq902RXEBDd0oSsD58ssvMWrUKFRXVyMjIwMzZszAk08+icGDB7ttmmIBsYRuEnb0RPQ8gOsA fM3Mo6NsLwDwDoAvw6veYOZHo5RTR68oNnD99ddj8eLFaGhoACBdGjMzM3H48GFkZWW5bJ2SKLE4 eit63bwA4EkAf2uhzApmvtGCYymK0gaKiorw0UcfnXPyAJCWloYf/ehH6uTbEQnH6Jl5FYCTrRTT bEeK4jDMjB/84Afn5aJJTU09l7dGaR840RjLAKYS0UYiep+IRjpwTEVp97z99tvYsWNHo3VZWVl4 7LHHLE9RrHgbSxpjiSgHwKJmYvSdADQwcxURXQPgT8w8NEo5jdErikXU1dUhJycHX331VaP1AwYM wK5du5CSomMlg4JTMfoWYebTEcsfENH/EFE3Zj7RtGzkaLeCggIUFBTYbZ6iBJK//OUvqKioaLQu KysLf/7zn9XJ+5zCwsKY8gtF4kSNvjekRw4T0UQArzFzTpRyWqNXFAuoqKjAgAEDcOrUqUbrJ0yY gLVr1+oEIQHDkRo9ES0AMANADyLaD+BhAB0AgJmfAnALgB8SUT2AKgDfSfSYiqI0zyOPPILa2tpG 6zIyMvDXv/5VnXw7RQdMKUqA2L9/P4YNG9aop01KSgpuuOEGvPnmmy5aptiF5rpRlHbGT3/6U9TV 1TVa16FDB/zhD39wySLFC6ijV5SAUFJSgnfffbdRvvb09HR8//vfx8CBA120THEbDd0oSgBgZkyd OhVFRUWNslR26tQJ+/btQ9euXV20TrETDd0oSjthyZIl2Lx5cyMnn5WVhXnz5qmTV7RGryh+p6Gh AYMHDz43ybZBdnY29u7de26+ViWYaI1eUdoBL7zwAo4ePdpoXVZWFp544gl18goArdEriq85c+YM +vXrh/Ly8kbrR48ejY0bN2q/+XaA1ugVJeA8/vjjOHv2bKN1mZmZOjhKaYTW6BXFpxw+fBiDBg1q NDgqOTkZM2fOxOLFi120THESrdErSoB54IEHGvWZB2Rw1JNPPumSRYpXUUevKD6ktLQUr732WqNR sKmpqbj99tsxZMgQFy1TvIiGbhTFh1xxxRVYsWIFQqHQuXWZmZnYu3cvevTo4aJlitNo6EZRAkhh YSGKiorOc/IPPfSQOnklKlqjVxQfEQqFMHLkSHzxxReN1vfo0QP79u1DRkaGS5YpbqE1ekXxKSdP nsTatWvPW79gwQIcOHCg0bqsrCzMnz9fnbzSLFqjVxSPctttt6G6uhrz58/HoEGDUFNTgwEDBpw3 CnbIkCEoKytDUpLW29ojsdTo1dErikc5cOAABg0ahFAohB/84Afo3Lkz/vSnP6GqqupcmczMTCxa tAhXXHGFi5YqbqKOXlF8zn/8x3/gN7/5DQCgrq6uUQMsEWH69OltnihaCRbq6BXF59TU1CAnJwdH jhw5b1tGRgbWrVuH3NxcFyxTvIIjjbFE9DwRHSGizS2UeYKIdhDRRiIal+gxFaW9kJ6ejqeeegpZ WVnnbUtNTcWxY8dcsErxG1a03rwAYHZzG4noWgCDmXkIgO8D+IsFx1SUdsONN96IcePGndfYWlFR gWuvvRYzZ85EWVmZS9YpfiBhR8/MqwCcbKHIjQBeDJctAtCViHonelxFaS8QEZ599ll06NABHTt2 RGZmJtLS0pCSkoLq6moUFhZiypQpePjhhxs11CqKQYoDx+gLYH/E5wMA+gE4L+h4+DCQne2ARR6k oQF4/XVg9WqgXz9g7lygZ0+3rXKHujrgtdeAtWuBgQNFi27d3LbKHWprgQULgPXrh+H++7fhm99k 9OqVjvR0eRkOvz1QUwP84x9ASQkwdChwxx1Ap05uW+UOVVXA008DmZmxlXfqCmnaUBC11TUnZx6+ 9S1g0CCgoKAABQUF9lvmAcrLgZtuAlasMNc99hjw9tvAZZe5Z5cbHD8OXH898Nln5rrHHwcWLQIm TnTPLjc4cgS49lpg/XpjzSA8/zzw3ntAXp6bljnPgQPANdcAW7aY637/e+D994GRI92zyw0WLCjE j35UiOPHY3f0YOaEXwByAGxuZttfAXwn4nMZgN5RyjHAnJXFvHEjtxvq65lnzmQGmLOzmR95hPny y+Vz587MZWVuW+gctbXM06bJuffrx/zoo+bnbt2Yv/zSbQudo6aGecIEOfecHOZf/5p54kT53Ls3 84EDblvoHJWVzKNGybkPGcL8m98w5+eb18mRI25b6BwVFcxDh8q5jxjBvHAhs7jxVnx0awViebXi 6K8F8H54eTKAz5opx9/9rlg0ejRzXZ2tenmG//ov8+bdvVvW1dczz5kj6ydOZG5ocNVEx3jkEfPm NRxZXR3zddfJ+hkzmEMhV010jAcflHMeNMh0ZGfPMl95pay/5hp37XOSH/9YznnYMObjx2VdVRXz 1Kmyfs4cd+1zkrvvlnMeM0acPrNDjh7AAgBfAaiFxOLvAnAPgHsiyvw3gJ0ANgLIb2Y/XFnJfNFF YtXzz9srmBc4eZK5a1c530WLGm8rL2fu21e2vfKKO/Y5yZEj8jQHMC9f3njbsWPMPXvKtoUL3bHP SfbvZ05Lk/NdvbrxtkOHzGvmww/dsc9Jdu1iTklhTkpiXr++8ba9e81rpqlOQWTrVmYi5g4dmLdt M9c7VqO34hU2ll96SawaOFAeX4PML34h53r55dG3P/20bB86NPhPOD/5iZzrdddF3/7HP5o1maA/ 4dxzj5zrt74VfftvfiPbJ00K/hPO7bfLuc6dG337z38u26+4wlm73MB4yr/33sbrfeno6+uZc3PF smeesUoi71FRwdyxY8u1kdpa5osvljIvv+ysfU5y7Bhzerqc54YN0ctUV0tIB2B+6y1n7XOSgwfN GmxpafQyp08z9+olWixd6qx9TrJrl1mDNcKaTYl8Kv7kE0fNc5StW+Uc09PlGokkFkfvuXR3ycnA Aw/I8tNPu2uLnSxYAFRWAtOnA1OmRC/ToQNw//2yHGQt/vY36To3e3bzvUnS04F//VdZDrIWL7wA 1NdLL6zhw6OX6dgR+NGPZDnIWjz7LMAMfOc7QE5O9DJduwI//KEsB1kL49zuuAPo0yeOHbT2T+DU C+EaPbM0tBj/0k3jckHB6DXQWk29osKMQwaxB04oxDx8eGw19aNHmVNTpZa3d68z9jlJQ4OELAHm JUtaLnvgAHNystT+Dx92xDxHqa2VXmix1NR37TJruydOOGOfk1RVMV9wQfP+EH6s0QNARgZw++2y /Mwz7tpiB+vXy6tbN+Cb32y5bOfOUqMBgqnFp58CZWUyUO6661ou26MHMGeO1PKee84Z+5zkww+B vXul9jpzZstl+/YVverrgf/9Xyesc5b33pMBlCNGAFOntlx20CDRq6YGeOklZ+xzkjffBE6eBMaP B8bFmSnMk44eAP75n+X9//5PLuYgsWCBvN92m4QkWsPQ4tVXgYgstYHA0OJ735NQVWsYWrzyijj8 IGFoMXcuEMscIpFaBA1Di7vuAqjFvIxCe9Eiblqr8jv1QkTohlke6YcMkceVjz5K5MHHW4RCZhfS lStj+05Dg9nV8rPP7LXPSRoamC+8UM6ruDi279TVMXfvLt/ZvNle+5ykttZ8PI/sOtcS1dXMnTrJ d3btstc+J6mqMsOVzTXCNuXUKbNBv2ljpZ+pqDDDlYcORS8Dv4ZuAPkXnzNHlt94w11brKSkBNi9 G+jdu/VHUoOkJDPEEyQt1qwBDh2SUEV+fmzfSUmRhkogWFoUFsrj+YgR8oqF9HRJFwEES4ulS4Ez ZyRU0VwjbFM6dQKuvlqW33rLNtMc5913Jd/RpZcmlgfMs44eMB39m28GJ2Rh3JA33yw9jGIl8k8v KCELQ4tvfjO2x3ODIFYAjHMxzi1WVAsT1aJ5PD3DFLP8o+/bBxQXyz+838nLAzZulFrLrFmxf6+h AbjwQuDoUWDbtthrfV5m6FBgxw7gk0+AadNi/15trWT2PHUK2LNHMlz6GWagf3/g4EFppG9Lg1tV FdC9uzREHjkC9Opln51O0NAgT7vHj0sj/bBhsX+3vFyuC2b5fpcu9tnpBLW10mHjzBlppB8wIHo5 R2aYshMi6VsNAIsXu2uLFRw6JE4+M1P6z7eF5GTgqqtkOQhafPmlOPmuXYFJk9r23dRU4MorZXnJ Euttc5qtW8XJZ2e3PStlZiYwY4YsL11qvW1O8/nn4qQvukgqAm2ha1cZk9LQACxfbo99TvLpp+Lk c3Obd/Kx4mlHD5hxtyDc0MaNWFAApKW1/fvGn14QtDDOYeZMibu3FeO6CMKfnnEOV13VthCWQRC1 uPrqxLQI0j0yu9n5+2LH847+yiulNrt6NVBR4bY1iWFcxPH+cEaNfsUKoLraGpvcIlEtjBt6+XKZ qMTPJHpDG99butT/bVlWabF4sf/bshK9RyLxvKPv0sV8HPvoI7etiZ9QCFi2TJYNJ9VWevWS3ik1 NcDKldbZ5jR1deZvGa8WOTkSvz11qvEkJX6jqkp+S6K2tdlEMny4xPiPHgU2bLDWPicpL5ffMiUF uPzy+PYxbpzE6fftA774wlr7nOTwYQnzZmRIj5tE8byjB8wboLDQVTMSYssWiT0OGAAMGRL/foKg xeefS56f4cNl2sR4CYIWa9ZIo9u4cTLyNx4i/yT8rMWqVVIhmjxZRoTHQ1KS2X7jZy2M2eamT49t UGVr+MLRG41Nfq7FGrbPmBFf7NEgaFokgmpholqYqBbn4wtHP3Gi9LTYuFEe7/yI8cO1tbdNU6ZO lVrLunXy2O9HrNLCmE939Wr/xumt0sL4vlEr9iNWa7FypX/j9FZpYeALR5+RAVxyifxon37qtjVt h9n84RKd7LtLF2DsWHFsRUWJ2+Y0DQ3Sbx5IXIvevSVOX1UVOYG2fzh71mxfSDQOO3CgxOlPnpTu mn6jslJCesnJzaftjpURI2RswcGDMgrdbxw/LqHetDRgwgRr9ukLRw80/pf2Gzt2mINZ2to3OBp+ 1mLzZuk9lZMjjilR/KxFcbE0rOfmxh+fNyDytxZr1kglID9f0hkkApFZifCjFkZFaPLk+LphR0Md vQNEPoYlEp83CIoWVqBamKgWJqpFYxJ29EQ0m4jKiGgHET0QZXsBEVUQ0Ybw6xfxHMeITRcXy2gx P2H1D2fUVoweG34isjeBFUTGphsarNmnU9jp3PwWm7ZLC+N68xN2OPpEUwsnA9gJIAdABwAlAEY0 KVMAYGEM+2o1Zef48ZKG9MMPY03y6Q2MWYNKSqzb54gR3OJ8s14kFGLu0UPs3r7duv3aoa/d1NWZ KYYPHLBmn6EQc8+e1utrN9XVzGlpYvfx49bsM1Lf/fut2acTnDol8wWnpDBXVsb2HTiQpngigJ3M vIeZ6wC8AuAbUcpZELAwa7J+apA9eFASEnXpAowaZd1+/ajFjh3AsWPSiDp4sHX79aMWW7YAp0/L 7Eh9+1qzz8jYtJ+0WL9eGqZHjZIkXlaQkmKmAV+92pp9OkFRkfSays8HsrKs22+ijr4vgP0Rnw+E 10XCAKYS0UYiep+IRsZ7sMmT5d1PvU0MWydObFta4tbwsxaTJ1vTVmHgdy2sRLUwUS1M4kgn1YhY IoHrAfRn5ioiugbA2wCi9j2ZN2/eueWCggIUFBQ02m5kOSwqkhiklc7CLowfrq0ZGlsjUgu/oFqY qBYmqoVJLFoUFhaisK3DfluL7bT0AjAZwOKIzw8CeKCV7+wG0C3K+lZjUaEQc69eEnfbuTO2+JXb zJgh9i5aZO1+GxqYO3eWfX/1lbX7tosJE8Te5cut3e/Zs2aM98QJa/dtFyNH2jM1ZGUlc3KyvM6c sXbfdpGTI1ps2mTtfo8dk/2mp8tUjV4nXv8GB2L0xQCGEFEOEaUC+DaAhZEFiKg3kdS9iWgiZLKT E/EcjMhf/9INDdJLCJDQjZUkJckgMsAfWtTUyMhmIusGgRikpppTEa5bZ+2+7eDUKaC0VCZDb2v+ +dbIypJYd0ODPwaRff21TB6TlQWMjDuoG53u3aUtqKZGxm94nb17RY/u3aXtxkoScvTMXA/gPgBL AGwD8CozlxLRPUR0T7jYLQA2E1EJgD8C+E4ixzQcph+c29at0hU0J8eemX/8pMWGDTKad8SI+BNW tYSftFi3TkKPeXnWDYiJxE9aGDZOmGBtG5aBH7WYONH6sHTC/eiZ+QNmHsbMg5n5t+F1TzHzU+Hl PzPzKGbOY+apzJxQUlk/1ejtij0aqBYmqoWJamGiWgi+GRlrYIQrNmyQLllexqmLeN067w8WWrtW 3u3WYu1a7w8WclILr+PUPdLetfCdo+/aVfKY19ZKzNfL2H0RZ2dLfvvKSon5ehm7tbjoIskXc/So xHy9CrP9WowYAXTsKDHfI0fsOYYVhEL2/+nl5UkbTlmZt2eoq6sz21Ssbs8DfOjoAX88jlVWSow+ JUUmlbALP2hx7JhMBp6Zae2gsUj80lB/4IDMHtStm7WDxiJJTvZHQ/327dIw3bevdYPGmpKWJs6e 2dsN9Zs3S6PxkCHWDRqLxJeO3riIvdyroKRELq5RoyTNsl34QQvDtry8+CYCjxU/aPH55/I+fry9 40D8pIXVvbCaolr41NEbXem8/MMZc3cattqFamHiBy0M21QLvS4isVsLXzr6sWOlH/nWrUB1tdvW RMepG9oIC23cCNTX23useHHDuXm1QdZp52bUFL2I09dFe9bCl44+M1ManBoavDsQwqmLuFs3aYis rpYGJy/ilBZ9+kjCtJMnvdsg65QWF18sE3h89ZW0CXgNZue0yM2VBtmdO73ZIFtfb3Yssas9z5eO HvD241hNjTxtJCUBY8bYfzwva1FRITdYaqr1Ix+bQuRtLQ4fFsfbubP1Ix+bkpRkamE8RXiJ3bvl 2ujdG7jwQnuP1aGDeR+WlNh7rHgoKxOfcdFFwAUX2HMMdfQ2sHmzPG0MH25tqtHm8LIWxo01Zozc cHbj5cd0w+GOGyeO2G68rEVkbd6J5IRevkeceLLxraMfP17evX4RO4FqYWJo0V5v6Ejau3OLpL3f I7519EYyqM2bvTedntMXsRHX27BBBqF4CTedm9caZNXRm6gWJuroW6BTJ2DoUBlRtnWr29Y0xumL uFcvoF8/SaC2Y4czx4wVp7UYMEAaqI8elcFJXsLQws4BdJEMGyYdF/buBY4fd+aYsRDZEOuUFqNG yRiOsjJvzTkdCjUO6dmFbx094M3Hsbo6YNMmWbY6BW1LeFGLqiq5sZKTgdGjnTkmkTfDNydOSE+g jAxxwE6QnGxeg17S4uBB+SPu2lUyuzpBero4e2ZvNcju3Cmj6Pv2lYZpu/C1o/fi41hpqYSSBg+W eWKdwotabNokNZbcXLnRnMKLWhi1trFj7R0d3BQva+FUQ6yB17WwE3X0FuN0qMJAtTDxYm8Tt7Tw 4pOe29dFe7xHAuHovTQq1O0b2kuNkF7QwiuoczPR68JEHX0MdO0qA09qaryTptfpRiaDCy+UtMUV FZIp0gu4pcWgQRI2O3RIXl7ALec2YoRkcNy1Cygvd/bYzeGWFmPGeCt1ipON0r529IC3aiwNDWZD j9PODfCWFmfPAlu2SAx27Fhnj01k6u8FLU6dkpS8HTpIe4WTRI4K9cII2a+/lt5QHTtKSl4n8Vrq lH37pJG+Rw/pNWcnvnf0Xnoc27FDum717w/07On88b2kxdat0gNp6FDpCus0XtLCyGMyerSkgnAa L2lh/Nnk5TkzOrgpXtLCydHBCUtNRLOJqIyIdhDRA82UeSK8fSMRWVrX9VLDm1uPpAaqhYmXtHCq Z0VzeEkLvS5MnNQiIUdPRMkA/hvAbAAjAdxKRCOalLkWwGBmHgLg+wD+ksgxm2I8opeUuD8q1CsX 8YYN7jfIekkLt3GrrcJAtTDxohaed/QAJgLYycx7mLkOwCsAvtGkzI0AXgQAZi4C0JWILBsa0LOn hEq8MCrUbefWvz/QvbtM3ef2qFC3tRgyRBLK7dsneriJ21oYo0K/+EIG57iJ21p4KXWKnxx9XwD7 Iz4fCK9rrYylTQ9eaIRkdv8R3StpeuvrzdHBbtXcIkeFull7q64Gtm1zLmV1NNLSzFGhRnuBG5SX S4+wtDRpFHUDI3VKba38Lm5x6JCkre7Sxf6U1QCQ6Bi9WAMETZsaon5v3rx555YLCgpQUFAQ087z 84F33hHnduutMVpkMXv2yIXsRH7tlsjPB5YtEy2+0fTZyiG++EIcnJ35tWMhPx/49FPRYtYsd2ww Ulbn5kqvD7fIz5fw5vr1wLRp7tjgdMrq5sjPl15Q69c7m6Ykksj8Nm1tiC0sLERhYWGbvpOooz8I oH/E5/6QGntLZfqF151HpKNvC16oxTqdX7s5vKaFm6gWJvn5wPPPqxbG8V95Rey56y53bEhEi6aV 4F/96letfifR0E0xgCFElENEqQC+DWBhkzILAXwPAIhoMoByZj6S4HEbEdln2q1GSK9cxF7oP65a mHhFC/3TM2mP10VCjp6Z6wHcB2AJgG0AXmXmUiK6h4juCZd5H8CXRLQTwFMA7k3Q5vPo00dS9ZaX uzdXqNu9CQy8MFeoV7QYOdL9uUK9okXkqNCaGnds8IoWkT31GhrcscFpLRLuR8/MHzDzMGYezMy/ Da97ipmfiihzX3j7WGa2/H/U7UZIZrNfrjEgwy2SkhpPROI0kfm13a65RY4KdaMRsrbWHIHptnPL ypKpLRsaZMSy05w5IymrU1KcS1ndHN27AwMHSjvSF184f/zjx2WOgMxM51JW+35krIGbjt7Ir33B BXIBuY2bWuzcCZw+bX9+7VhxU4utW8XZDxkiE4K7jZtalJRIhcjplNXN4aYWxjHz8qR3mBOoo7cA rzTEGnhFCy+gWpi4GZv2mhbt7boIpKN3ukHW+OHcDtsYeOEiVi1Ui0hUCxM3tAiMo8/JkbTFX3/t fGpaIz7vldrKsGEyZd2ePcDJk84e22tajB4tj8elpTK1oZN4rRZr9BnftEkSzjmJ17SITIXgdOoU N+6RwDiVYPfDAAAVx0lEQVR6NxtkvXYRp6SYqYGdbJCNzK/tFS3S0yUuHAqZo3WdoL7ebAB2uyHW oGtX6ZV19qyz8zdUV0t7RVKS8ymrmyM7WwY2njoF7N7t3HHLy2VuAKdHBwfG0QPuOPrDh6UrY6dO chN5BTe0MEYH9+olXV69ghtalJWZo4O7dXPuuK3hhhbG6OARI9wdHdwUN7Rwa3RwoBy9G41NkTVY N/JrN4cbWkR2MfVCo7SB29eFl3DDuXlVC7fvESfxkGtKHL2ITVQLE9XCRLUwaU9aBMrRG6lp9++X fu1O4NWLODdXHg23b5d+7U7gVS3GjpUnjC1bnEtN65UBdE1xY/4Gr2rhRk89dfQW4EZqWq9exE6n pvXS6OCmGKlp6+qkUdBuIkcHe6Uh1sDp+RsiRwe7lSmyOQYMkPYTp+ZvOH1aRuJ26CD3ppMEytED zj6OHTsmE1tkZooj8RpOanHggOjRrZvcQF7DSS2MuYP79ZOGaa/hpBZuzx3cEk731Nu4USpEo0ZJ RcxJ1NEnQOREx04NZW4LTmrhtdHBTXFSC68+2RioFiZu3SNOo44+Abw2OKgpqoVJe7mhY0G1MGkv 90jgHP2IEfJYtGuX9Om2E68N626KkZp22zbp020nXtfCiJVv3CiDmezET87N7kZIP2lhN27eI4Fz 9JGpaY3BCXbh9Ys4M1P++BoazAYxu/C6FhdcIIOX7E5NGzk62Kt/ehde6Mz8DZGjg716XTg1f0NV lVS4kpPdmTs4cI4eMGtvxqOSHbg1lLmtOKHFoUPy6tzZmYmO48UJLb78UiY5cXvu4JaIbIS0U4vS Upnk5KKLJP2CF0lKMnsD2Vmr37RJemMNHy55qJwmkI7+kkvkfe1a+45h7HvcOHcnOm4NJ7QoKpL3 CRO8NTq4KU5qMXGifcewAtXCpD1o4eHbMn4mTZJ3Q1w7MPZtHMurqBYmqoWJamHSHrQIpKMfORLo 2FGm6zpi6TTkJm7/cLGSlyfzppaV2Tdvql+0mDBBwhYbN9o3b6pftDBqlsXF9jVO+0ULw761a+1r nHZbi7gdPRF1I6JlRLSdiJYSUdQoHBHtIaJNRLSBiGx8ODJJTpabGrDnX5rZ/R8uVtLSxNkzA+vW Wb//hgZzv17XolMnqQTU1dkzcvrsWXO/xvXnVXr2lNh5VZU9o4UrK2W/KSneGx3clAEDpE3lxAmZ CtNqjh6VtpvMTOdHxBokUqP/NwDLmHkogOXhz9FgAAXMPI6ZHYtQ2fk4tnu3jALt0UNuFq9jpxal pXJTDxggOb69jp1abNwoQ/6HD/du42MkdmpRXCyNj2PGuNP42BaI7NXCiP2PHy9/fG6QiKO/EcCL 4eUXAdzUQlnHx0ra+cNF1ua9OAq0KU5p4QdUCxPVwiToWiTi6HszsxEBPwKgdzPlGMCHRFRMRHcn cLw2YYi6bp31WfqMf2i/XcR2xCD9qoWdNTe/aWFHbxMvOLe2YKcWXrguWnyQIKJlAKI9kP888gMz MxE150KmMfMhIuoJYBkRlTHzqmgF582bd265oKAABQUFLZnXIn36SFKpAwdkgIyVfd39dhFffDHQ vbs0TO/bBwwcaN2+/aZFbq7ESnfvlthpz57W7dtvWhhdg7dulcyKViYd85sWl1wiT+clJdLWYlXS MWbrHX1hYSEKCwvbagjH9QJQBiA7vHwhgLIYvvMwgJ82s42tZs4cZoD5hRes2+fZs8xpabLfkyet 26/dXHON2Pzqq9bts7KSOTlZXmfOWLdfu5k+XbRYtMi6fR4/LvtMT2eurbVuv3YzYYLY/dFH1u1z /37ZZ5cuzA0N1u3XbkaOFLs/+8y6fX7xhezzwguZQyHr9htJ2He26HsTCd0sBHBHePkOAG83LUBE mUTUKbycBeAqADYPxjeZMkXeP/3Uun2uXy//+H5pcDOwQ4uiIul1M3ast+YCbQ07tFi9Wt4nTPD2 ALqm2KGFsa9Jk7w9gK4pdmoxebK77XmJ/AyPAZhFRNsBXBH+DCLqQ0TvhctkA1hFRCUAigC8y8xL EzG4LUyfLu8rV1q3T2NfM2ZYt08nUC1MVAsT1cIkyFrE3dmHmU8AmBll/VcArgsvfwnAtXllxo2T qQW3b5eERVZ0/zN+OOOi8AsTJ8rAqY0bJU+PFU8jftVi2jSpXa1bJ/3IrXga8asWl10m76tXy/gC K55G/KqFYe+qVdKBw4qnEa9o4aMHq7aTkgJMnSrLq6I2/7aNhgbgk09k2bhB/EJGhjQ4MVvzaFpb C6xZI8uXXpr4/pykSxcJN9XVWdP7prJSkoMlJZmP/36hd2+Z/enMGWsGkR0/LnPzpqWZOWT8wsCB 0oHjxAnJNJkoBw7IQKnOnd3JWBlJoB09YO3j2ObNkkYgJ0fm3fQbVmpRXCxpBEaOlIFjfsNKLT77 TNII5Od7b7q8WLBSC6MiNGmS89PlJQqRtVoYlctp09yfgU4dfRvwymNYvKgWJqqFiWphElQtAu/o jdj05s3ySJYIXvrh4mHqVAkvFBfLo3oi+F0LI/S2Zo2EoRLB71o0jU0nQlC0WLky8cGFXtIi8I4+ PV0eIxONTTN764eLh86dpYG6vl7CDfHi57YKg169pItsdXVik2/U1Jha+q2twmDgQMlVVF6e2Exk p09L9+PkZP+1VRgMHy6hyEOHZGKheDl6VOL86eneSHAXeEcPmF2bPvoo/n1s2yY/XnY2MHiwNXa5 gRVarF8vN/WgQdJ45Ves0OKzz2RcxahRMvrYr1ihhfFEMH68pAn3I0TWaLFihbxPmSIRBbdpF45+ 1ix5X7Ik/n0sXizvV13lj0RmzWG1Fn5GtTBRLUyCqEW7cPRTpkhviNJSyfUSD8aPfvXV1tnlBtOn S2+I9evlCSUegqLFlVdKmGHNGuDUqfj2YWgxe7Z1drmB4ZBWrJBwVjwERQvjuv7wQ+mC21aYvXeP tAtH36GD3NRAfP/SVVUSnycy/+39SmamPJoyA8uWtf37J0+KY0xJAa64wnr7nKRrVxmaXl8f32P6 4cOSBCsjw79tFQa9e0v7TU1NfGNOdu+WgYlduvgnkVlz5OQAw4bJn3884yxKS6UPfe/eMl7DC7QL Rw+Y/6zGI1VbWLFC4rDjx1ub7dAtEtFi+XKJw06dKo27fseofcajxdJwMo+CAml08zuJaGFUoGbO dG9yDStJ5B6JDNt4JdePR8ywH+MiXrq07fOFLlzYeB9+55pr5P2999r+aBpULRYtanvXwqBqsXBh 27sWBlmLtuJJLVpLb+nUCzakKW5Kfr6kDH3nndi/U1/P3KuXfG/DBvtsc5JQiHn4cDmnZcti/97Z s5J6FpD0q0EgFGIeMEDO6dNPY/9eZSVzRoZ8b98+++xzkniv9ZMnmTt0YE5KYv76a/vsc5Kamviu 9cOHmYmYU1OZy8vtsy8S2Jym2HfMmSPvr78e+3c+/RT4+mvpSuiVeFuiEJlavPFG7N9bvlxSQIwa JflRgkC8WixeLI2Wkyb5Mx1GNJKTgZtvluW2aLFokTwZzpgRjNAmIB0WbrhBltuixdtvy9PQrFnS XuEV2qWjX7gw9tGQxo88Z46/u1U2xdDirbdkAFQsRGoRJCIdfawhi6Br0ZbKUNC1aIuj96wWrVX5 nXrBgdANM/Po0fI49uabrZc9e9Z8lC0qst82JwmFmC++WM5t8eLWy585w9y1q5TfvNl++5ykoYG5 Tx85t5UrWy9fXs6cmSnld+2y3z4nqa1l7t5dzq24uPXyX38tYYqkJOaDB+23z0mqqpg7dhQttm1r vfyBA6JDSgrzsWP222cADd2cz513yvvTT7deduFCCdvk5vov5WprELVNi9dflyHyl1wioZsgkZQE zJ0ry7Fo8Y9/SJfbggIJ6QWJDh2A22+X5Vi0+Nvf5Ol49myZpzlIZGQAt94qy88803r555+XBv2b bvLgKOnW/gmcesGhGv2xY1IDIWLes6flslddJf/mf/qTI6Y5zsGDMt9rSgrzoUMtl730UtHimWec sc1pvvxSzi8tTeZ/bY5QiDkvT8r+4x/O2eckW7fK+XXsyHz6dPPlQiHmYcOk7NtvO2efk6xbJ+fX vTtzdXXz5errmQcOlLJLlzpmHjPHVqN33cGfM8QhR8/MfNttcuY/+1nzZbZt43OTPbd04/udm26S 8/z3f2++zOefx3bj+x3jj/2xx5ovs2pVbDe+35k2Tc7ziSeaL7NkCZ+b+LquzjnbnCQUYh43Ts7z ueeaL/fWW1LmooucnxBdHX0zGP/SGRnMX30Vvcwtt0iZH/7QMbNcYeVKOc9OnZqPK157rZT56U+d tc1pPvhAzrNbN+aKivO3h0LMM2ZImV/+0nHzHOWNN+Q8s7OlfaYpoRDzJZdImd/+1nn7nOTvf5fz zMmRdrumNDSYbX8t/THaha2OHsA/AdgKoAFAfgvlZgMoA7ADwAMtlLNZjsbcfLOc/b33nr+tuNis zQetgSkaV1/d/BOOUYPt2DE4faSbIxQyQ1TRnnCMGuwFF0jf8SATCpnjTh5//PztRg22d28ZUxBk 6uuZR46U833yyfO3v/yybOvfX/rfO43djn44gKEAPm7O0QNIBrATQA6ADgBKAIxopqztgkSyebO0 kBMxr1hhrq+qMmOwQa/BGhhPOCkpzJ99Zq4/fZp5xIj2UYM1WLFCzjc1lbmkxFxfXs48aFD7qMEa LF4s55uZyVxaaq4/epS5b18OdPtVU958U863c+fGPa0OHTJ75j37rDu2ORK6acXRTwGwOOLzvwH4 t2bK2ipGNB58kM89qi9Zwrx/P/Ps2bJu0KBgx6Ob8uMfy3n36sX88cfSUH355bJu+HD5A2wv3H23 nHefPsyffCI3thGzzsuL/vgeVIz2rIEDpYvx9u3MEybIusmTgxubb0ooZEYBBg9mXr9eGq3HjJF1 l1/ufGzewAuO/hYAz0R8/i6AJ5spa6sY0airY77xRlEh8tWtW/D6irfG2bNmY2Tkq1ev4KQ7iJXq aubp08/Xom9f5t273bbOWSormSdNOl+LnJz2EdaMpLzcfNqPfA0ZwnzkiHt2xeLoW8wzR0TLAGRH 2fQQMy9q6bthYhxnKMybN+/cckFBAQoKCtry9TaTkiIj2R5/HPjrXyUF76xZwPz5wesf3RqpqTKU /de/lj7Dp09L3+j582WaufZEerpkY/zVr4AXXpA+89dfD/z+98HrK94aWVmSwvmXvwT+/nfJ4nrT TcDvfifTMbYnunSRdOUPPQQsWCAjyufMAf7zP4Fu3Zyzo7CwEIWFhW36DskfQvwQ0ccAfsrM66Ns mwxgHjPPDn9+EECImR+PUpYTtUVRFKW9QURg5hYTtFg1Mra5gxQDGEJEOUSUCuDbAOJI/KkoiqLE S9yOnohuJqL9ACYDeI+IPgiv70NE7wEAM9cDuA/AEgDbALzKzKWJm60oiqLESsKhG6vQ0I2iKErb cTJ0oyiKongUdfSKoigBRx29oihKwFFHryiKEnDU0SuKogQcdfSKoigBRx29oihKwFFHryiKEnDU 0SuKogQcdfSKoigBRx29oihKwFFHryiKEnDU0SuKogQcdfSKoigBRx29oihKwFFHryiKEnDU0SuK ogQcdfSKoigBJ5E5Y/+JiLYSUQMR5bdQbg8RbSKiDUS0Nt7jKYqiKPGRksB3NwO4GcBTrZRjAAXM fCKBYymKoihxErejZ+YyQCamjYGYCimKoijW40SMngF8SETFRHS3A8dTFEVRImixRk9EywBkR9n0 EDMvivEY05j5EBH1BLCMiMqYeVVbDVUURVHio0VHz8yzEj0AMx8Kvx8lorcATAQQ1dHPmzfv3HJB QQEKCgoSPbyiKEqgKCwsRGFhYZu+Q8yc0EGJ6GMAP2Pmz6NsywSQzMyniSgLwFIAv2LmpVHKcqK2 KIqitDeICMzcYjtoIt0rbyai/QAmA3iPiD4Ir+9DRO+Fi2UDWEVEJQCKALwbzckriqIo9pFwjd4q tEavKIrSdmyt0SuKoij+QB29oihKwFFHryiKEnDU0SuKogQcdfSKoigBRx29oihKwFFHryiKEnDU 0SuKogQcdfSKoigBRx29oihKwFFHryiKEnDU0SuKogQcdfSKoigBRx29oihKwFFHryiKEnDU0SuK ogQcdfSKoigBRx29oihKwFFHryiKEnASmRz8d0RUSkQbiehNIurSTLnZRFRGRDuI6IH4TVUURVHi IZEa/VIAucw8FsB2AA82LUBEyQD+G8BsACMB3EpEIxI4ZrugsLDQbRM8g2pholqYqBZtI25Hz8zL mDkU/lgEoF+UYhMB7GTmPcxcB+AVAN+I95jtBb2ITVQLE9XCRLVoG1bF6O8C8H6U9X0B7I/4fCC8 TlEURXGIlJY2EtEyANlRNj3EzIvCZX4OoJaZ/xGlHCduoqIoipIIxBy/LyaiuQDuBnAlM9dE2T4Z wDxmnh3+/CCAEDM/HqWs/ikoiqLEATNTS9tbrNG3BBHNBnA/gBnRnHyYYgBDiCgHwFcAvg3g1ngM VRRFUeIjkRj9kwA6AlhGRBuI6H8AgIj6ENF7AMDM9QDuA7AEwDYArzJzaYI2K4qiKG0godCNoiiK 4n1cHxmrA6pMiOh5IjpCRJvdtsVNiKg/EX1MRFuJaAsR/YvbNrkFEaUTURERlRDRNiL6rds2uQ0R JYejCIvctsVNiGgPEW0Ka7G2xbJu1ujDA6q+ADATwEEA6wDc2l7DO0R0GYBKAH9j5tFu2+MWRJQN IJuZS4ioI4DPAdzUjq+LTGauIqIUAJ8A+Bkzf+K2XW5BRD8BMB5AJ2a+0W173IKIdgMYz8wnWivr do1eB1RFwMyrAJx02w63YebDzFwSXq4EUAqgj7tWuQczV4UXUwEkA2j1xg4qRNQPwLUAngWgHThi 1MBtR68DqpQWCffYGgcZfd0uIaIkIioBcATAx8y8zW2bXOQPkN5+odYKtgMYwIdEVExEd7dU0G1H ry3BSrOEwzavA/hxuGbfLmHmEDPnQdKMTCeiApdNcgUiuh7A18y8AVqbB4BpzDwOwDUA/l849BsV tx39QQD9Iz73h9TqlXYOEXUA8AaAl5j5bbft8QLMXAHgPQAT3LbFJaYCuDEcm14A4Aoi+pvLNrkG Mx8Kvx8F8BYkFB4Vtx39uQFVRJQKGVC10GWbFJchIgLwHIBtzPxHt+1xEyLqQURdw8sZAGYB2OCu Ve7AzA8xc39mvgjAdwB8xMzfc9suNyCiTCLqFF7OAnAVgGZ767nq6HVAVWOIaAGA1QCGEtF+IrrT bZtcYhqA7wK4PNx1bEN4JHZ75EIAH4Vj9EUAFjHzcpdt8grtOfTbG8CqiOviXWZe2lxhHTClKIoS cNwO3SiKoig2o45eURQl4KijVxRFCTjq6BVFUQKOOnpFUZSAo45eURQl4KijVxRFCTjq6BVFUQLO /wdcAmhbrixx1QAAAABJRU5ErkJggg== )

极坐标系注释文本

产生极坐标系需要在 subplot 的参数中设置 polar=True

In [6]:

fig = plt.figure()
ax = fig.add_subplot(111, polar=True)
r = np.arange(0,1,0.001)
theta = 2*2*np.pi*r
line, = ax.plot(theta, r, color='#ee8d18', lw=3)

ind = 800
thisr, thistheta = r[ind], theta[ind]
ax.plot([thistheta], [thisr], 'o')
ax.annotate('a polar annotation',
            xy=(thistheta, thisr),  # theta, radius
            xytext=(0.05, 0.05),    # fraction, fraction
            textcoords='figure fraction',
            arrowprops=dict(facecolor='black', shrink=0.05),
            horizontalalignment='left',
            verticalalignment='bottom',
            )
plt.show()

![]( AAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd8FNX6/z9ne09CAiQEEkroVTpI70VBwYIoghe5/lS8 tmu9eot4bVe/9oKIFZCiVKUJhBqQHiKhBEIgEEp6sn135vz+2M1mN9nNtpndDc779ZpX5syeOefZ 7OyzpzyFUEohICAgIMANomgLICAgIHAzIShVAQEBAQ4RlKqAgIAAhwhKVUBAQIBDBKUqICAgwCGC UhUQEBDgEEGpCgg0ACHkSUJIDiHkD0LIk85rTQghvxFCzhJCthJC4t3qf00IOU4ImRw9qQWiiaBU BQR8QAjpBuBhAP0A9ARwGyGkHYAXAfxGKe0AYLuzXFP/EoA+AB6MitACUUdQqgICvukE4HdKqZlS ygDYBWA6gCkAvnPW+Q7AHc5zOwA1AHmkBRWIHQSlKiDgmz8ADHVO91UAJgFoCaA5pfS6s851AM0B gFJ6GoAEDuX7aRTkFYgBJNEWQEAgVqGUniaEvA1gKwADgOMAmDp1KCGEupWfjqyUArGGMFIVEGgA SunXlNK+lNLhAMoBnAVwnRCSDACEkBQAN6Ipo0BsIShVAYEGIIQ0c/5NAzANwDIA6wHMdlaZDWBt dKQTiEWIEKVKQMA3hJDdABIB2AA8TSnNJIQ0AbASQBqAAgD3UEoroielQCwhKFUBAQEBDhGm/wIC AgIcIihVAQEBAQ4RlKqAgIAAhwhKVUBAQIBDBKUqICAgwCGCUhUQEBDgEMFNVUCgDoQQGYBkAC0A pABoBkAGQArHd6bmABxBVGoOGwArHB5WVwEUAbhGKbVGUn6B6CIoVYE/FYQQAqANHKH8Wkql0lSV StVeLBa3ZFm2udlsThKJREqdTmdOSUmxpaamEpFIJGvevDni4+NFMplMVFpaKkpMTBSpVCrYbDa2 sLCQKhQKRiqVsiaTic3OzoZer7eXlZWJKysrlXK53KxUKkskEslVhmEK9Xr9ebvdfgXAZQDZAC5Q wWD8pkEw/he4aXFToH1kMtlAjUYz1GAwdJXJZKLOnTvbe/bsKWnVqpU8KSmJpKenIzU1FSkpKUhK SoJIxM3KGMuyKCkpwdWrV1FUVISrV6/i6NGjtLq62nLp0iVrdna2RK/XE41Gc9JoNO6yWCy/AzgC QdE2WgSlKnDTQAhpBWCQTCYboFKphptMps4qlQqdOnViBw0apBo1apSoT58+SE5OjraoHly7dg1H jhzB4cOH2b179+oPHDggs1qtrEajOWkwGPY4Fe1+SmlhtGUV8I+gVAUaLYQQEYDeUqn0ToVCcT+l tPnAgQOtffr00QwaNEg0cOBANG/enLf+d+7ciREjRvDS9vXr13HkyBEcPHiQXbVqleXixYtEIpEU GY3G5TabbQ2Ao5RSlpfOBcJCUKoCjQpCiBLAKI1Gcy/LsrcnJiaKp06dqpg2bZp02LBhEIvFEZOF T6VaF4ZhsH//fqxcudK2bNkyu8lksohEonV6vX4lgB2UUnNEBBHwi6BUBWIeZ/i9yQkJCTONRuOQ zp07WydNmqSdPXs26dChQ7TFiwpnz57F+vXr6ffff68/ffq0TKPR7CkvL18G4FdKqRDfNYoISlUg JnFO7cfFx8c/bzKZBnfp0oU+9dRTismTJyMxMTHa4sUUpaWl2LhxI1auXKnfunWrTKlU7q+srHwT juSEwhJBhBGUqkBMQQhJlEgkc2Uy2d+Tk5NVL7/8snrGjBlQq9XRFq0ekZz+B4rBYMCyZcvw7rvv VhcVFRlMJtP7DMMsppSWRlu2PwuCUhWIOk7Tp35arfbvNpvt9jvuuIN96qmnVP3794fjpdgkFpVq DZRSHDx4EC+//LJ53759kMvl66uqqt6jlB6Mtmw3O4JSFYgazgylM+Li4l6QSqUtH374YcWzzz4r SkpKirZoNxUlJSVYvHgx+3//938mo9F4Ta/X/xfACkqpMdqy3YwISlUg4hBCNHK5/O+U0ueHDh3K PPvss5rx48dzZnAv4B2GYbBx40Z88MEH+qysLMKy7P+sVut7lFJ9tGW7mRCUqkDEIITIJBLJX2Uy 2evjxo2Tvv7666quXbtGW6yQieXpvz/y8vLwyCOPmPfv32+12+3/sNvtXwoxCrhBGBoI8A4hREQI malSqS737t37rb1798atWbOmUSvUxk779u2xY8cOxb59+3SDBw9+U6PRXCSE3Oe0uhAIA2GkKsAb zg2oCVqt9qP09PTkjz76SDNy5MhoiyXghczMTMyZM8dUVlZ2Wa/X/w3AFiH2QGgISlWAFwghA3U6 3acymazLwoULFXfeeWdM7+QLOCwG1qxZg6eeespQUVFxurq6ej6l9EC05WpsCEN9AU4hhKTodLqN iYmJ2997771brl69qpg2bdpNqVB37twZbRE4hRCCadOmIT8/X/3qq6/2jouL2xEXF/crISQl2rI1 JgSlKsAJhBAiEokekMvleTNnzhxTWFioevjhh4lEIoTsbWxIJBI899xz5OrVq8rHHntsrEqlOiMS ie4nN+MvIw8I03+BsHGOTr9v2rTpoBUrVqj79OkTbZEEOOTQoUO4/fbbzQaDYa9er3+QUno12jLF MsJIVSBk3Ean5x5//PHhJ0+eFBTqTUi/fv1w8eJFxfz584cLo1b/CCNVgZBwH50uX75c3bdv32iL FHEas51qqBw+fBhTp041VVVVZen1+lnCqLU+wki1EUII+ZoQcp0QkuN2bQEhJJsQcpwQst0ZBR+E kNaEEBMh5Jjz+Mztntud9ywKom/X2mnN6PTPqFD/rPTt2xf5+fnK+fPnD+Ni1EoIETufyw3O8r8J IZfdnteJbnW/dj7fk7l4L7xBKRWORnYAGArgFgA5bte0budPAPjKed7avV6ddpbD8cP6GoCuAfQb r9PptrRp00a/b98+KvDn5tChQzQtLc2g1Wp/AxBPQ3uWnwGwFMB6Z/lfAJ7xUq8bgH8DEMMRtyDq 30NfhzBSbYRQSvcAKK9zrdqtqAFQEkBTIgByACo4Uiv7hBDSUaVS5cycOXP4qVOn1IMHDw5S6tjG ZrPBZrO5yosXL0ZhYW1KqEWLFuHy5csNlq9cueIqL1y4EEVFRa5yUVERGIbhS/yo0LdvX5w9e1Z1 9913D9VoNCcIIUFFDCeEtAQwCcBXAGpGu8Tt3B07ADUcz2tsE22tLhyhHfAyAgXwXwCXAJyGc+Tg rKcHcAzATgBD3OqPAXAYwNt++pqgUCj0b7zxBkNvEjZt2kTPnDnjKi9ZsoQWFha6yizL+m0jMzMz 4P5Wr15Ni4uLXeUPPviAlpeXB3x/rLNw4UJGqVRWAxhPA3+GV8Ex4xoOYIPz2r8AFMCRunsx3EbA AN4HcAjAsED7iMYRdQGEI8QPruFp/YsAvnGeywAkOM97O5WuNsA+iFwufz4uLs64Z88e2phZu3Yt PXLkiKtcWloakOJsiGCUal1YlvXo//XXX6dWqzUseaLNtm3bqFqtNsvl8ufg3AT3dQC4DcCnzvMR bkq1GWpHq68DWNxQO7F4RF0A4Qjxg2tYqaYB+MPHa5kAegfQvkKj0axs27at4eLFi7SxsXv3brpt 2zZXOVwFGklMJhN94403oi1GSBQUFNAOHTrotVrtcgAK6vv5egNAIYALAK4CMAD4ngb4jMfyEXUB hCPED67OAwegvdv5EwB+cJ4nARA7z9sCuAw/mwoAUrRa7YnJkycb9Ho9bQwUFBTQlStXusqNSYn6 o7CwkH755ZfRFiNg9Ho9nTx5slGtVp8EkEL9P8vu0/8Ut+tPA1jm7/5YO6IugHCE8KEBPwIogmNz qRDAXwD8BCAHwHEAPwNo5qw7DcAfzjXVIwAm+2m7n1KpLPn3v/9tjXXFdOnSJde50WikNpstov2H M/0Ph+zsbHr+/Pmo9B0oLMvSF1980apSqUoA9KUNP3MjULv7/wOAE8411bUAmjd0byweURdAOGLn EIlE0xQKhembb76hsY7ZbKbfffddVGWIllKtrKykeXl5rnIs//itXr2aqtVqg0gkmkZj4BmPxCF4 VAkAACQSyQMajebLnTt3Knv16hVtcbyycOFCTJkyBSkpQtAkd77++muMHj0a6enp0RbFKwcPHsTI kSMtFotlrt1uXxptefhGUKoCkEgkD2u12g/37dun6tKlS7TF8cBoNEKlUgEAWJYV8lj5wWaz4cSJ E4i1GAwnT57E0KFDTdXV1U/YbLbF0ZaHT4Qn9E+OXC5/QqfTfZSVlRVzCvXAgQM4eLA2o3KsKdRY jKdKCEFpaWm0xahH165dceDAAWVcXNxHUql0frTl4RNhpPonRqFQPJ2QkPB6VlaWqk2bNtEWBwBw 4cIFtG7dulEEtW4MAVV27dqFli1bol27dtEWBQBw7tw59O/f32w0Gl82m83vR1sePoitn36BiCGV Sh9Tq9X/PXDgQMwoVEop9u7di8byQx/rChUABg4c6Fo+iQUyMjJw7NgxRVxc3OsymezRaMvDB4JS /RMilUr/otVq392/f78yPT0d5eXl2Lp1a1RksVqtOH/+PADH1HXWrFkxN81vzMjlctfGHsMw+Pzz z6P2o7V161aUl5cjPT0d+/btU6nV6vfEYvGcqAjDI8LT+ydDJBLdp9FoPsnKylJ26OCIf5GQkIDU 1NSoyHPixAmwLBuVvsMlFtdUG0IsFmP69OlRW1pJTU1FQkICAMeIddeuXUq1Wv25SCSaERWBeEJY U/0TQQiZpFKpVv/+++/ybt26RU2O8vJy6HQ6iMXiqMnABY1hTbUhtm/fjt69e7sUXTTIycnBkCFD TFVVVdMppZuiJgiHCCPVPwmEkM5KpXLFmjVrGlSoOTk5+O2333iVZfXq1TCbzbz2EQkas0IFgF69 esFkMvHax9atW5GTk+Pz9e7du2Pjxo1KhUKxihDSiVdhIoQwUv0TQAhJUKvVOR9++GHK3Llz/f6Q VlZWIi4uLhKiCcQIFRUVkMvlUCqVnLYb6LP09ttvswsWLCgyGAw9KKXlfm+IYYSR6k0OIUSiVqs3 zpo1KykQhQqAc4VqsVjw5ptvctomV1BKQW1GsIYbYMrzYS8+CfuNP1wHU3oGbPUVsOZKUNYzyHRj W1NtCKPRyMtmZaDP0gsvvCCaPXt2U61Wu44Q0qjzmgsj1ZscjUbzSbdu3R7au3evSiIJ7ln95Zdf kJycDC5yUFFKo7ZBwhpLwJSdA1t2Dkz5ebCVl8AaroPVXwU13ABYe8BtEWUiRJpkEHVz7L3AYuSI ERAnZEDUJAOiuFYgRBinHD58GNeuXcNtt90W1H12ux3Dhw83HD9+/FuDwdBoHQQEpXoTI5FIHkpO Tv7kxIkTqiZNmoTURqiuoWazGXv27MHYsWND6jdUqM0E+9WjsF87AubacdivHQfVRybhJ5HrIG7e E5LmPSFO6QNJy0EQKRrfMorJZMLHH3+M559/PqT7w3EnLisrQ+fOnU2lpaWP2e32b0NqJMoISvUm hRAySKVSbT98+LCyc+fOYbdnNpuhUCgCrn/t2jVYrVakpaWF3XdDUErBFP8B24UdsF/aC3vRIYCx BNeIWAEiU4PItCBSJVAz2qQUlLGAWg2gNj1gNQAI4vtCRBA36wFp2hBI202AOOWWRjOSZRgmaOuM YJ8RX+Tm5mLAgAFGvV4/mlJ6IOwGI4ygVG9CCCEtlUrliW+//Tbhnnvu4aTNxYsX4/bbb0ezZs04 aS8cKGVhv3IQtnMbYTu3CWzV5YZvkCggbtIe4iaOabo4vg2IJhkiTQpE6mYg0sA8jihrBzWWgNVf A6u/hp3bt+LWtmKw5efBlJ4BNZU1eD/RpECWMRHSjEmQtBwIIop9kzKWZVFQUIC2bds2WO/GjRvY sGED5s6dy0m/v/zyC+65554Kk8nUjVJ6xf8dsYOgVG8yCCFKrVZ79KWXXsp46aWXIrrgn5ubi5yc HNx77728tM9UFMCauwrW3JUNKlJRQjtIWg6CJPkWiJN7QZzYAUQU/L/i1KlTSEtLg1qtBgB89tln uPvuu9G0aVMAwJNPPolXXnkFTZs2BaUUSxd/gnG9mkJjOAv75SwYr2RD7qNbkTYVsm4zIe82AyJt i6BlixQMw2D58uW4//77I973/Pnz7d999905vV7fm1LKr+0XhwhK9SZDo9F8NmLEiDkbNmxQ8rUx VFhYiFatWtW7zsdmFGUZ2PK3wnJsMeyF+7zWIXIdpG1GQ9J6BKSthkKkDS3e6qJFizBp0iSXd9mO HTvQv39/aDQaAP6nxCUlJYiLi4NUKgUAfPrhu7hrSBo0JQdgO78ZP+4twh09FVBI3f5HRARp61GQ 954HSdrQRhFIxh1fzwIXUEpxxx13mLZv375Yr9c/wUsnPCAo1ZsIQsgQrVb7W35+viIpKYm3fr77 7jvcf//9qLEmuHHjBufLAtSqhyVnCSzHvgZbVVjvdaJIgLTDbZBlTIKk1WAQsSzoPpYuXYp+/fqh xl2XTyhrR+GRX5BQvh/MuQ1gjGX4YIcBT49WuxSpuHlPKPrNhzRjYkwuDVgsFqxevRr33XcfAMdu /dKlSzF79mze+iwpKUFGRoapsrJyLKXU+69qjCEo1ZsEQohKrVbnLVmypMUdd9wRsX4vX76MI0eO YOrUqZy0Ry3VMB9fDMuRL0HNdWzAiRjSNqMh63I3pG3HgkjkQbW9adMmJCQkYODAgZzIGqqbKrVb YDu3CYbjPwBFWQCAUj2L7WcsuKePEqKEdlAOfh7SDrfH3Mg1Pz/f7/oq13z//fd49NFHrxmNxnaU UmNEOw8BQaneJGg0ms8mTJgw56effuLWJaYB7HY7Dh48iMGDB4fdFrWZYDn2FcyHPgO1VHi8RhQJ kPd4APKec4Jafzx16hRyc3Mxffr0sOXzBhe+/0z5BViOLoLljx9RXm1EgsphHVBuZKFpeQuajP0P JKkDOJCWO7KystC/f38Ea/ccDtOnTzdt2bLla71eH/P2q4JSvQkghAxRq9XbLl68KE9MTIxIn/v3 78egQYOwbds2jBkzJuR2KGVhPb0G5r1vgq323OQVxaVB0W8+ZJ3vcpg6BYD7UoTNZoNEIom50Z43 WGOJQ7lmfwtqqUJBqR3nixmM7iSHNGMiVCMXQKSNTiSxumzbtg29evXCzz//jEceeSQifZaUlKB9 +/amioqKmF8GEJRqIyca036LxYKsrCyMHDkyrHbsN3Jg3PYCmGvHPK6L4lpDMfApyDpNAxFLg5Lr +++/x7x588KSK5qw5kqYD34Ey7HFHva2K46xGHP/39Fu3DMxs95qsVgglwe3BBMOq1evxqxZs2J+ GUBQqo0crVb72fjx4yM67fdGcXExjhw5ggkTJvitS60GmPb/D5ajiwBaG0uVKBOhHPwcZN3vD9gE avfu3UhNTY1KuhA+Q/8xVYUw730L1tOrHWWWgmEBZau+UI97D+LEjrz064vNmzejT58+LnOyaDF1 6lTT9u3bY3oZQFCqjRhCyFCNRvNbQUFBRKb9R44cQadOnVx2m3XJy8tD+/btG2zDdmkvjFuf9rQz Fcuh6D0Piv5/A5Frg5IpmjmtIhFP1X7lIAy//R1sWZ7rmp6RYcnVQXjxvR8j9r4b+mzXr1+PtLQ0 RCK1udsywDhK6V7eOwwBQak2UgghKpVKlffVV1+1qDFx4Zvt27dj1KhRIX2Rqd0C0763YDnyhcd1 SatboRrzNsQJgY00y8vLsX79el7NeGINarfAfOgTmH//EGBtruvSDrdDNeZ/IHJdVNeNKaWw2+0u +1y+WbNmDWbNmlVkMBjax+IygKBUGylKpXLBuHHjnlm3bl3sZHVzcvToUZSVlbk2sJjSMzD8+iiY klOuOkSRAOXwf0PW5e6gFILVaoXNZvM5Wr6ZYUpOQ//r/wNbesZ1TaRrhV/Ze9F72GR06sRtjOdt 27ahSZMm6N27N6ftcsGQIUPMhw4d+p/FYvlntGWpi6BUGyGEkKYKhaLg5MmTKr5tBlmWRU5ODnr2 7BnUfQaDAWq1GtYz62DY8jRgr/UylLQeBfX49yFSB+YwcPz4cYjFYnTv3j0oGfgmGulUqM0E465/ w3ri+9qLUjXUkz+HrC23EcH0er3LmyxQ3n77bTz//PO8j5zPnz+P7t27G00mU2tKaTGvnQVJ4wiZ I+CBSqV6bdKkSZJIGGFfuHAhpC+ISiGDcee/oP/lkVqFKlZAOepNaO5cErBCBQCtVosuXboELcPN CJEqoR7zNtS3LQKkztG6zQDD2tkwH/4C+fn5WLp0aVh91Ay0glWoAPDEE09EZCmiXbt2mDVrlkil Uv2b986CRBipNjIIIa1VKtWp/Px8RfPmzaMtjldYcyUMGx6GvXAvfskxo3WiGD26dIRmymKIkwKb ohYXFyMxMVFIV90ATPEp6Nc96LHpJ+/z/yAZ9BJksuDddgEgOzsb+fn5uPPOO7kSkzeuX7+O9PR0 i8Vi6UgpvRhteWoQnthGhlarfefpp58W861Qi4uLwTCM/4p1YCoLUb1iCuyFjo3Z27or0GvIZOju 3xSwQgUcO8pWqzXo/v9MiJt2hnbmJohb9HNdsxz5ArbdrzjCI9rt2LNnT1Bt9ujRgxOFunPnTuTn 54fdTkM0b94czzzzjEin073Da0dBIijVRgQhpDvDMFOef/553rdZ169fH7RStV8/geofJ4MtPeu6 phj8HDRTvwGR62A0Br5RO3fuXE4CHvNJLOSoEqmSoL1rFaQZE13XrCd+gHHTExCLHK7EgVDz2XA1 dR88eHBEPr8XX3xRCuB2QohHimBCyNeEkOuEEJ+pXAkhHxFC8ggh2YSQW7iSSVCqjQidTvfBP//5 T6lOp+O9r7lz5wY1hbRfOYjqVXeBGp17BmIZ1BM/hXLgM65o90uXLkVZmfdAzpRSvP/++2BZ1uvr Ar4hEjnUt30JWefaGAfW06th/O35gDbSysrKwl6HrYtMJkOLFvzHidXpdPjXv/4l1+l0H9V56RsA Pj1RCCGTAGRQStsD+CuAz7mSSVhTbSQQQoY0bdp0S2FhoSqSroGBYLu0F/q1D7o2pIg8Duqp30Da clBQ7QipscODUhbG7S95WAbI+zwK5bBXAQALFizAq6++GlGb1srKSpSUlPDq8WY2m9GiRQtTeXm5 R1wAQkhrABsopfXMRgghXwDIpJSucJZPAxhOKb0erjzCSLURQAghWq32k3feeUfJp0KllOL1118P 6h7bxV3Qr5lVq1BVSdDes8avQj1//jwAz+mpoFDDgxARVKPfgqzrDNc1y5HPYTn0CQgheOWVVzwU as1nwCdqtRqnTp3yXzEMFAoF3nvvPYVOp/uYBP6LkQrAPVDvZQAtuZBHUKqNg4kajabDrFmzeB1i EELwwgsvBFzffuUg9OvmAIzZcb8mBdp71kDc1H+iwf3794NhGLz99tshbYjFArGwploXQghUY/8H abvama9p7xuwnv3Fw5KiqqoK+/fv510eiUQSdKrqUHjwwQdJYmJiewAT/Vaupe73iZNpu6BUGwHx 8fGvvvvuu8pgs1uGQqCuhvYbOahe8wBgdypUbQuHQm2SEdD9DzzwAMRiMf7xj38EnbVToGGISAL1 5M8haXWr65ph899gL84F4PBKW7x4MR544IGIysXnj6dYLMaLL76o0el0/w7wlisA3PPAtHReCxtB qcY4hJCOLMv25CvQcg1btmwJuC5TUQD9z/cB1moAzin/XSshjk8P6P6qqiqXuZTVag3a7CdWiLQ3 VTAQiQLq27+CKL6N44LdBMO6Odi17RcQQvD0009HVB6WZfHWW2/x2sfs2bNBKe1GCAkkP856AA8C ACFkIIAKLtZTAUGpxjwqleqpOXPmSPhcS7VYLAg0yhVrroB+zQOgplIAjk0pzfQVAQdEAYC1a9e6 THhkMlmj2vHPzs72sJ/dt28fLBZLA3dED5EiHpqp37g8r9iqQhgPfOgRsb+yshJms5l/WUQivPzy y7z2IZfL8eijj0rUavXfCCE/AsgC0JEQUkgI+Qsh5BFCyCMAQCndCCCfEHIOwEIAj3Elh7D7H8MQ QtQKheL66dOn1enpgY0C+YQyNuhXz3QZ9kOsgPbulZC4GZ83dvR6PaRSqSv48gcffIDZs2cjISEB gCPIyJAhQ6BQKLBz507I5XL07t3bVf+dd97BY4895nLxzMrKwsCBA6PqGWY9vwWGdXNcZeXI/0Jx y18AcJ9jLNpcvHgRHTt2NFgslmbRimAljFRjmxlDhw6lfCrUYLyWjJmv1CpUAOoJHwalUEtLSxt8 /erVq9i8eXPA7XEBpdRjpLl27Vro9XpX+amnnnIpVAAYM2aMh1H7oEGDPKLfP//88y6FSimFyVQb SMZqteLIkSO8vI+G2JFHUZZeGx7StPs1MCWnAQAtW7aMqEJlWRYbN26sd33z5s3o1KkT2rdvj7ff frve6yUlJZgwYQJ69eqFbt264dtvv/Xafnp6Orp06SICMMNrhUhAKRWOGDwAEJ1Ol7d582bKF2az mb7zzjuB1T25gpa9l+w6jPv/L6i+zp07R3/55Re/9S5cuBBUu+GyatUqeubMmYj0ZbFY6LZt21xl lmUj0u+FCxcoazPTyu9Huz6/yu9HU9Zu9ahXWVkZEXkOHjzoUbbb7bRdu3b0woUL1Gq10p49e9Lc 3FyPOv/617/oiy++SCmltLi4mDZp0oTabDav7W/atInGxcWdhXMmHulDGKnGLgPEYnHLsWO5Defm jlwux3PPPee3HlNyGsZttaZW0o53QDHgqaD6ateuHSZPnuy3XuvWrYNqN1jOnDmD1atXu8p33XUX OnQIZF8jfGQyGUaPHu0q5+bmYuXKlbz327p1a4fX1aRPAbFjlM0Un3TkwXLjhx9+8BhZ80W/fp6z m4MHDyIjIwOtW7eGVCrFjBkzsG7dOo86KSkpqKqqAuDY6ExMTPSZzXXcuHFQKpUtAPTn5Q34QVCq MYpOp3tX3oCiAAAgAElEQVT2xRdflEU7ShO1GqDf8LDLdErUpD3UY98N2CsnUN/zuhw4cACZmZkh 3dsQ6enpnEVgCtdOtWvXrrjnnntc5by8vJpZSthkZmbiwIEDHtfEiR2hHPSsq2zKescjwtXjjz8O pTJyqc5qNiivXLmCVq1qrZtatmyJK1c8rZvmzZuHkydPokWLFujZsyc+/PBDn+2KRCI8+eSTSq1W 63/EwAOCUo1BCCFJVqv1trlz5/L2+ezatSugesbd/wFb7vS8kSihuX0RiCzwqPvvv/9+SKOfgQMH YuDAgUHfVxdKKRYsWOBS7gqFImZTVhcVFaGwsNB/xQDw9f+T93kEokRntDC7CcbMV+rV4UqxN0RJ SQm++MKRWieQz+ONN95Ar169UFRUhOPHj+Pxxx9HdXW1z/rz5s0TWSyW2wghSZwJHSCCUo1BxGLx w1OmTKF8JvMLxIzJdmE7rCd+cJVVY94KOovnc889F/Lop+a+cL7khBC8+uqrPqeK4cC1nerw4cOR lpYGwJGLq6SkJOg2av5Xvv7nRCyFemxtpDzb+S2wXfb0rDp06BA2bdoUdN/BkJSUhEcffRQAkJqa 6vFjUlhYiJYtPT1Gs7KycPfddwNwLCW1adMGZ86cgS8SExMxffp0RiKRzOVB/AYRlGoMolar582a NYvXedjIkSMbfJ01lcGwtXaqKG1/G2Sd7+ZTJJ+sWrUKubm5AdfPzs7Gzz//zKNE/EMIQVZWVlD3 5ObmYtWqVX7rSVr0g6xL7Wdp2vNfjx+u/v37Y9y4cUH1HQo1I9S+ffsiLy8PBQUFsFqtWLFiBaZM meJRt1OnTti2bRsAR3DqM2fOwF/mi3nz5qk0Gs1f+JG+AaKxOyYcDe76t1Sr1SZfO5uRQr/pCddO cfnn3SljLAn4XpZl6ZdffsmpPMHslEdqVz0zMzMi/VBKKcMwfusE877tlZdo2Qdprs/YkrcxHPFC 5sSJE9RqtdKNGzfSDh060Hbt2tE33niDUkrpF198Qb/44gtKqWPH/7bbbqM9evSg3bp1o0uXLvXb ttVqpXK53AIglUbyOxzJzoQjIKX6/+666y495Ym1a9fSc+fONVjHemmfh/mU5dyWoPpgWZZevnw5 HDF94svs5/z58zQnJ4eXPn0RKaXKMAz9z3/+41NphmoKZch81fUZV3w7ol77ZWVldMeOHV7v3bRp E+3YsSPNyMigb731ltc6mZmZtFevXrRr1650+PDhXuscO3aMVzO6SZMmGQA8QgWl+uc94uPj965Y sYLyRUVFRYMjGtZuoRXfDHV92ao3zONNllD48ssvaUVFRb3r2dnZ1GKxREGi6FJRURHyrIAxltCy j9q6Pmtr/vZ6dY4dO1bvWiB2peXl5bRLly60sLCQUuoYaUaD5cuX04SEhF00gt9hYU01hiCEaIxG Y7/x48fz1kdcXFyDu62WI1+CLctzFKRqqIb/J6j2+c5LNG/ePK9xV3v06BFysrvGBKXUw1QqLi4O 8+bNC6ktkTIR8m4zXWXz4frB73v16lXvWiB2pcuWLcP06dNdG05JSRHfhAcATJgwAQaDYQAhJHCT lTARlGpsMbZv375mvoI1V1RUNPg6ayyB6WCt/Z/y1uch0qYE3D6lNKIRp7744ououH3WEI14qoQQ VFRUcBb4Wd77rwBxhF60F+6F/fqJenUYhoHBYHCVA7ErzcvLQ1lZGUaOHIm+ffvihx9+gC8opfjx xx/DfSteiYuLQ9u2bRkA/HnR1EFQqjGETqe7d8aMGVo+2qaU4ptvvmmwjvnAB4DV4fcuapIBea/g Nk4JIZg9e3bIMgaLTqdD7969I9ZfrDB+/HicOFFf+YWCOK4VpB1ud5UtJ+orP71ej2XLlrnKgdiV 2mw2HD16FBs3bsSWLVuwYMEC5OXlea1LCMEtt3CWd68ef/3rX5VarfZe3jqog6BUYwRCiNhisUye MmUKL5bp/mJoMuUXYDnxnausHPoKiIh7204uoNRh/jNz5syoGvJHK54qIQT33nsvqqursX379rDb U/Sa4zq3nlkHavMM7lR3iSEQu9JWrVrVuIsiMTERw4YNQ3Z2tk8ZOnUKPH15sNx5553EbrdPJoRE JBq6oFRjhwHNmjVDtEL8mfe/C7AOryNJ6gBI2wZnp/jtt9+6lB2fXLx4sV6EIrPZHJOpTbhm586d HrFPtVotmjRpEna74hb9IYp32nxaq2E917DhfyB2pVOnTsXevXvBMAyMRiN+//13dOnSJWxZQ6F1 69ZITk4GIhQLQFCqMYJCoZg2a9YsXhKl22y2BtfgmPILsJ5Z6yorh74S9AhwxIgRERk1pqWlYc6c OR7XFAoFopFhNtKKXC6Xe4QdBMDJtJkQAlm32tmxNdd7kJfDhw+jpKQEEokEn3zyCcaPH48uXbrg 3nvvRefOnbFw4UIsXLgQgGPkOWHCBPTo0QMDBgzAvHnz/CrV9957DzabLez3442BAweq5HL5NF4a r4MQpDpGSEhIOL9x48a2gwYFl9Y5EC5evIji4mL07dvX6+uGrc/C+odjzUySPgza6Ss4l+FmZOfO nTGTUmXPnj0YNGhQyO64bHURKhf1cRREEsT9vxyIFPEedYqLi1FRUYH27duHK65XTCYTb7EZsrKy MHny5PPl5eWBJVELA2GkGgMQQpR6vT6Nr8X69PR0nwqVrb4Ca26ta2OwIf0Yhgk5ElUwfPzxx64U LA1x6dIl3v3Wa4iEQt20aRMuXbrkt17z5s1x/br3FEv+AkADgEjbAsf1bdD0uWvYcFwP24X6a7VN mzblTaECjngFfM12evfuDYPBkEYI4WU26I6gVGODHi1btjTVndpFAvOxrwHWMeWSpPaHtGVwI+W9 e/fi999/50M0D+bOnQuVSuW3XlpaGnr06MG7PJGiR48eriArDdGhQwekpqbWu84wDObPn4/Nmzcj NzcXP/74o9elIIZh8J/1xRjdUQ4KR6CVaGAymXjJuqpQKJCammoCwPvDISjV2KDP0KFDedmZPHv2 LAoKCry+Rm0mWP+otQ+U93086PaHDx+OW2+91X/FMAlEodbgTbnwQSTWVIN9L3q93iM9TCCG+oBj JnDXPfchUeNQCbaCnaCsd+X2/vvvByVTMGzfvr3B6FPh0L59exmAPrw07oagVGOAuLi4oYMGDQpc awSB1WpFfHy899fOrAM1lwMARLpWkLYZ7bVeNMnMzAzZqmDPnj3YvXs3xxLxz+7du0N2orh27Zor mhMQmKH+lStXsG7dOjz293+DSBQgAGCtBlPiPTLYQw89FJJsgXDbbbfxZiVwxx13KOLi4obw0rgb glKNAViWvbVPH35+QLt16+ZTqVqOf+06l/ecAyIKbrDMlVdPQxBCQl5nGzp0KCeBrjMzMz1Mmd54 4w1YrVbXmuqCBQtcu9aU0rBTPg8cOBBDhw4N6d6MjAyPtDWB/O+eeuopvPXWW46Mr8qmqPkJs1/2 vqzj63mKdfr06QNCSPgPhB8EpRplCCFKk8mUEul1QHvxSTA3chwFsQKybsEnn2zImJsrwt0MqokH EEhQ7hoYhvFQjBqNxmNX/eWXX/aIM/Dqq69CKpUCcJivffrppyGNrmtk5DKGQSCG+keOHMGMGTPQ pk0brD9wEc/9XIVNf5hhv+J7rdx9iYFrrl27xsvmZ48ePaDX61vxvVklKNXo06N169ZGPjapTp48 iZMnT3p9zZpbG8RZmjEBImXwRuQzZvCXBZhrU7/ly5f7dJOsy08//YRr1665yv369fNqquRtTVUm k+HZZ591jRBPnjwZkDVCXl4eli9fHpB8gbB//37k5+cHZKifn5+PCxcu4MKFC5g2ZQLena7DxG4K MNd9/2h+++23KCsr40xed06cOMFZWhl3lEolmjZtagXPm1WCUo0+fQYNGsSLP6hWq/VYT6uBsgys p9e4yvLOd/HRfVi8+eabnI5WZs6c2aA5UHl5uev83nvv5Syra9euXQPayGvfvj1mzpzpt16g1ETt CsRQ3x2RPA5wLgOxVYWgzlgQdXnkkUc48ebyxrhx49CmTRte2h49ejQB35tVkYwzKBz1D51Ot3LB ggU0klgLdrlF9e9GWSb4LAO+ghdzhd1u563tsrIyj3J1dTVdtGiRq8yyLGWtRsfBYRYBlmXp0qVL PdqsKwul/gNAL1myhPbo0YN2796dDh48mGZnZ3MmI6WUVnw73PV82IqOcNp2tPn0009pXFzcUsrj dzo2I2b8iSCE9B0zZkxE+7Tm/eo6l3WcGlLgFL5dUsVi/mJf/PTTT5g5cybUajUoy0BRfRb3d62E fs0sMCWnwBpLAMa5ZiiSQKRJgTipEyQt+kHabhxETTqE9P4JIR5OGAaDAT/99JNHsJIau9Jt27Yh NTUV/fr1w5QpU9C5c2dXnbZt22L37t2Ii4vD5s2b8de//rVeOmr39oL9X4qTOoEtdZg1MSWnIUnx Hgns6tWraNq0KS9JFc+cOYOOHYNLMhkIzg1h7t0W3RCm/1GEEEIMBkOrbt26cd62yWTCihX13U0p pbCd3+oqS9tPrlcnEPjyJmIYBhcuXOCl7RrmzZsHqr+Gxa/OQOWivqj+cTLM+9+F7cI2sNVXahUq ALB2sFWFsOX/BtPeN1D13QhUL5sI65n1yMzcEXTfHTrUKmS1Wl0vwHQgdqWDBg1yBeoeMGAALl++ 7LO///7XM6lfIIjjaxPqsVW+1zZzc3MD8vYKhaNHjwa1uRgoXbt2rdms4m1UICjV6BIvkUhYjUbD ecOEEK9mOcyNE6AGxyYMUSRA0qIf532HQ0FBAYqKinhrnzWVwrjznzAsGYkh4h34I8+H0hDLHIcX mOvZMPz6CIyZr4ApCd5Q/cSJE2BZFgsWLKin8AKxK3Vn8eLFmDRpks/XX3311aBH1SJtsuuc1V/z WW/06NF+M5qGyn333ecw8eIYpyUHC4CfSPCAMP2PMikqlYp7nzw43PJatGhR77rHKLXN6JCm/mvX rsUdd9wRlny+aNeuHdq1a8d5u5RS2M6uh3HHy6CmMsgI0EwnxoECG7q2bQ5Zu7GQpA2FpFk3iHSt QKQOXwxqN4MtvwD7jROw5f8GW/4210h2cPwFVC2bCPWEDyFzC/TsT468vDz06NEDL7/8cj2FF4wC zMzMxNdff419+/b5rBPSMoWmNtsDq78a9P2xTmJioqWoqCgFQMOpMEJEUKrRpUXr1q2tAJSR6tB2 sdbDSNo2tAwT0Yr5GirUboZx2/Ow5q7Cxj/MGNFBDpWMQJzcG/fd9iik7caDiKVe7yUSBcRNO0Pc tDPkXe8FayyB+chCWI4sdMRMsJtg+OURYKINss7+I8sRQjB9+nQA3teNA7ErBRyj3Xnz5mHz5s1I SEhosM8rV64gOTk54LVVkcZ9pOo9SEsNubm5vHlAnThxgpc4Dk2aNKFFRUUtAPDivSJM/6NLSnp6 Oi87Ml9++WW9a9RqAHP9uKssSQvNZ5+vaFp5eXm4epXbkRFrLEH1ymmuSFwZTSVQJ6ZCPeVraO/7 BbIOt4GIpTAYDAFF0RepkqAa+g/oHtiKfddqTIooDJv/BnvRIZ/3bd++3SPPkzvr1q1z2cUGYld6 6dIlTJs2DUuWLEFGhv9IdmfOnMHFixf91quByHS1BZt3md3b5ssRIFC74mBJSkoSAwg8+VqQCEo1 uqSkp6fz4t3h7qpYg73okCu6vzipM0TKRD66DpmKioqgAqf4gzWWoHrVXWCuHXNd6zZyJuIe3AlZ xkSPqbFarYZOp/PWjFfESZ2gGv0mRInONCCUgWHTfFCbyWt9nU4Htdp7Qs9Ro0ZBqXRMVgKxK33t tddQXl6ORx99FLfccgv69284oP2oUaOCWvusWfoAUC+1Sl3uvPNO3gKE14zouaZnz54y8KhUhel/ FFEqlW3VajUvn4G36Eb2y1muc0nLwSG1u3btWowfP96lBLikXz/uNs2opRr6n+5xmQaVG4HmE16D qs/DPtcZg+1/1PgpYKt6o+qHMaCWSrCVl2A58T0UfR4Jqm2t1jPX48SJEzFx4kSPa488UtvmV199 ha+++iooWYMhGKXaGGnVqpVUqVTytoYljFSjiEKhSItk3h57UW06Z0nL0OJKdOrUiReFyiWUZWDY 9DiYEueSGRFhE3MHpD1mB7Rxc+7cOWzevDmgvkS6llAMft5VtmR/59rR37x5M86dOxew3Ddu3Ai4 brD88ccfgZsoua8vs/7Tmxw/ftxvnVDIycnhJb1K8+bNoVAouN8NdSIo1ShCCGnpbYc+XC5fvoz1 69d7XKOUhb0mgAoASXKvkNrmK+tlUVERjh075r9iAJgPfQxb/m+usmrc+3j8X58HHKgkIyMjoNTX Nb7/8m73ATKHWRxbcQFsyWkAjmjzgax51rBmzRrecjQVFRWhuro6sMqsm3twANYhvuL1hktJSUlA 2R6CJTU1FZTS+v7bHCEo1Shit9ub8aFUk5KSMGzYMI9rbMVFwOr4UhFlExBtZAI5B0NSUlLYbdiL c2He/3+usrzv45B3vSfodpo1axZwXSJVQtqqdtPPXnwy6DYAxxS/JtoV14wbN87lMOAPylhd58SH ra47fJnXjRw5MmCZg6FFixZgWTb8h80HglKNEk5vqiYpKdyvlysUinoxLxm3Uaq4WfeQ3UyXLFkS lmy+aNGihdfgL8FAKQvj1mddU1ZxSh8oh7wUVrqXHTt2+LQDdfcqE8U5Up4cuGBF5s7QAkzHDIzb aDkEO+ZYJyUlBSaTKYEvrypBqUYPCcMwkrqbFHzhHsVd3Kx7yO0MGDCAC3F4wXZ2Q63JmFgO9fj3 QURilJaWhtzmqFGjAnrP1O6Iv9o3TYoRA7uG3N/Jkyd5WwI4evRoQPWopdJ17mFe5YPjx4/zEv9U r9fj9OnTnLer1Wphs9mkAHgxZxSUagAQQr4mhFwnhOS4XetPCDlICDlGCDlECOnn9tpLhJA8Qshp Qsg4t+u3E0KyCSGLAEic7nKc8/PPP9fLrMmU1/rTi5uEnqWXr2yaddeAg4Wydpj2vuUqy3vPg7iJ Q9aG3DgDoSZgSF3FUbOmSimFpdBhoyoRE4gTQt8DKS8v9whDyCWBxihljcWuc6LyP0suKSnhxVaV ZVmPuLZcQQiBSCRi0YD1EyFkgvP7m0cIecF5ra3zO7+dEOIz/YGgVAPjGwAT6lx7B8CrlNJbAPzT WQYhpAuAewF0cd7zmds0434AtwC4CqCbWCzmRamOGDGiXqxLtiLfdS6O5ydWZTiEm6zPlv8b2MoC AACRx0PRL/gkhv5YtmyZVyP6c3uWYMVvzk02sQLiFO/pwANhyJAhQa/FBsrUqVMDqkeNtSN7kcq/ LfOYMWN82uCGg06n4y1wj3NA41WpEkLEAD6B4/vbBcB9hJDOAB4FcDeA/8LxXfaKoFQDgFK6B0Dd 4cNV1AZliAdQE/ViKoAfKaU2SmkBgHMAauaPIgByACpHs9xGt68hMTHRY8ODUuoxUhUlhBYE48qV K9ixI/jITIEQbo4uy/FvXefyHg9ApHAMJPbu3cvZ1PTBBx/0cNEdPvRWWE+vQVL2fzCjr8PMTNbl LogUvMXqiAjuQVSIqmkUJeEPsVhMAfjaFewP4ByltIBSagOwHI7vtR2Axnn4XKMRlGrovAjgPULI JQD/A/CS83oLAO6x2C4DqBmGfQlgDwAGwCWZTMb9QpQXqKm01t1QpgUJ0ZMqLi7OI65nrMBWX4X9 kjOmARFB1vNB12tWq5Xz2Kym3z/E+Q/74dxbbWHY+Jjrf0vUzaEc8pKfu/1z5MgR/5VC4PDhwwHV Y8vPu84DmdUUFBSguLjYb71QCFTmYCGEUPie/qcCcF8rqfkOf+o8/gLA546toFRDZzGAv1FK0wA8 DeDrBupSAKCUbqOU9qWUvgBA4vy15JzPPvvMo8waao3KRdqUkHf+NRoN+LBWAOA1F32g2PJrI29J Wg6GWFdrRTBq1CjuA2rbDHhz1R948sfadWuiSYH2rhUh5fqqC1f2unXZsGFDQPUYN6UqauJ/fTgn Jyeo2ALBEKjMwWDc9RpEYETwrVS9fi8ppZcppSMopXdQSn0a0N589hKRoz+ltCZk/08AavwGrwBw tw1qidqlAXcYlmVd3/aaTY+aNaRwytOnT/coU8MN7D3n2EgY0aop5/1xUb5+/Tp27twZ0v3W81td 72/syIm8yyvSpqJjMylyi2zYd0WL0XfMhqL/E9i1/yiAq2H38fDDD/PyHoYNGxbQ/7hXmcMLbO85 C1QnSzDaqVd91R88eDDkcjkv//OmTWuXH7hoj1IWvbK/AlhGBMeM0Rt1v8Ot4Dn7bBDC17rezQYh pDWADZTS7s7yUQBPU0p3EUJGA3iLUtrPuVG1DI51mVQA2wBk1F1AJYQ0kcvl18xmMz/W3m5YclfC uPlJAIC0453QTP7Mzx3eKSoqwqlTpzB69GguxQsLSllUftYZ1FIFAND95QDE8bXrnllZWejbty+n aZ9ZYwmoqRS7j+Zj5NiJ/m9oRLCGG6hc2NNRECsQP/+sz7CIjRHWWILKL7oj/ZVSptpka0oprWdq QQiRADgDYDSAIgAHAdxHKQ0oVKAwUg0AQsiPAIYDSCKEFMKx2/9XAJ8SQuQATM4yKKW5hJCVAHLh WNh+zMeOlJ23nao6UEOJ61ykDt2RJCEhgTc31VBhy/NdCpUoE11G+DVIpVJYLBZOlOqmTZvQuXNn R6ZVVRJGjnXkUCooKMDp06cxYUJdA5Hgqaqqgt1u5yVTKaXU71KI/WqtLau4efebSqECtZtwdscs 0eueBqXUTgiZD2ALHLasiwNVqICwphoQlNL7KKUtKKUySmkrSuk3lNLDlNIBlNJelNJBlNJjbvXf oJRmUEo7UUq3+GjWzrIsL///n376ycNOlVprfb6JPPSdaaVSGbbpky/Wrl0b0n3MjT9c5+LkXvWU Rr9+/epFgQqVXr16eU1d3bp1a/Ts2ZOTPk6fPs1bOpnXXnvNbx3mqlvQnQBNw1atWoWqqqqQ5fJF eXl5WN5w3qjJZGCz+1aqAEAp3UQp7ej8Hr8ZTB+CUo0evCnV0aNHe0SDdw/f5h7WLZYINZsAW1W7 1BWO0X0g1N2kq1mz8/ZaqPTv3x98JIIEgFdeecVvHdvl/a5zX1lU6zJ48GBO4+DWQAgB1/nb2IoC AADD0gaVajgISjV62ABQk8l7UONwSEhI8JjuesTElIQXtu/7778P635fhJpNgK2u3QMU6byPon/9 9Vev1wNhz5492LVrV8D1d+3ahT17YtP3359pGWsqBVMz/SciSFoFFnM3NTWVlzTV8fHx6No1dJdf b7DlF2CyUYhFIgqelKqwpholKKVUo9FUXLt2LbFNG549nDgcqd56a2gpWPjCw09d4T1Xk/sOcrAM GDDA53qsN2+f4cOHw2q11q8cAOXl5aisrPS6xBAuDMNAJBI1uKZqL9iFGmsicUofTszDYg2mIh/X qxjEqeWGkkojL3sawkg1isjl8mI+1s8uX76MNWvWuMqU1nrDhpI91R0+Mp0CQHFxMTIzM4O+ryaQ CQAQH6Nwf+lGvMEwDmubUDa4au6paSNQ8vPzeUnLDACrV6/2G5zEmu+eaXdUwG0vWrQoZLkaYv/+ /aio4DbhKVtRgGuVLORyCT8BFiAo1WhzhQ+lmpyc7DGKch+duCvYWCIhIcFrSm2/uL8fETeeU+fP n8fy5cv91nNfU/XG8uXLcf78+QbruNOnTx+kpaX5rxgCd999d4OWG9RSDdu52j1VWdvxAbddN/UL VygUCigU3KVwo4wVbFUhiioZiAjhLfe2oFSjiNVqvcxHaDOJROKZtpi4f8zhKVW+dnolEgk6duwY wo1uyxk+ku4BwKlTpwL2zmnXrh3uv99nvIyAuf/++3kb2YdCQ1N/67lNAOMY9YuTukDcNHB3ZG8p tLnglltu4VSpsuX5AGVRrGdhsbHcf/GcCEo1iuj1+nN6vT64OWIouCvVME1jhw0bxqkhfbgQmVuS OqvvdCGdO3fGyJEjG2yrrKwsqL6DiaDUUNt2ux2LFy8Oqu9gsNlsftOSWHNXus5lnafxJks0sd84 AQC4Vk1QXK4/y1c/glKNLkWXLl0y+68WPB9++GFtQeRmwM2EtolSgzNpWlht+CInJwcHDhwI6h6R urnr3N0SwBsNmecYDAb8/PPPQfUdDD///DMMBoPP172lFOcKf/9XpuQ07IXO7AZEBFmnwNOjLFu2 LKwg4A0RjtWGN5jrjnDIBRUiCoenFC8Iu//R5WpBQQEvZh2zZs1ynRN5rfE7tQSY/C0KdOjQAZWV lf4ruuHuQcVU+g/CfO3aNVRXV9cLtq1WqzFv3ryg+nb3o/dHQ21LJBIkJycH1Xcw+EtiaD5Wm+5a 2m4CREHkLxs7diwv3l9A8Dm+/FGTUqighGHhCN3JC8JINboUnTt3jhc/QPcH3T0lBrWGvx766aef ht2GN+RyedBfJPfQdK6U1A2QlJSEy5drHQays7MRIW9hAA5X0ezsbABAZWUlbxGpAoU1lsB6qnaE Lu/9cFD3N23alPsoYE769evnv1KAOLIJO7zvjDbK60hVUKrR5arRaOT9M+B6pHr33XeH3UZDBKPk xM26udaM2dKzoFZ9g/UlEolrbZVSivz8/JCVQihR6QkhyM/PB6UUBQUFvO321+AvNbX50GeA0yxN 3KwbJKkDeZUnWrDl511xb69XWAmEkepNS4nZbJbykd/HYDDg448/BuDp70/N4Zvn8ZXuA3Bs2rz5 ZuCu1kSqgjixxlSIwl50KOB79+3bx5s5UEPceeedIISgZ8+eSEwMLWB4oBw4cMCntxOrvw7L8W9c ZcWAp4P6gdm5cyf279/vv2IIrF27ltNkgvbLjjVls41Cb7YRAPwsBENQqlGFUsqq1eobZ89yvxGp Vqah70sAACAASURBVKsxd+5cAIBIXasEWf11X7fEBBKJBC+88EJw96TVennZ8rf7rb99+3YYDAak p6eHFbzEn52qN27cuOFyzDAYDNi+3b+84TBt2jQold6dIsy/f1BrRtWsO6QZwf3A3HrrrZxO0d1p 164dp66vtkKH8s8vsUOjVpZTHg22BaUaZUQiUTZfeZ9qglyItLVG9TVResLl9ddf56QdbwSb/kTa dqzr3Ja/xa+DQ3x8PNRqNVq1aoW2bR35ulg2Mk4RMpkMY8c65FWr1YiP95mUk1fsN/6A5URtHAfl 4OeDXgaRSqW8+PwDQPfuoadRrwulFPbLWQCA44U2yKTy4ExMgkRQqlGmqqpq+5kzZ7if/8PxMFFK PZVq9VVONmaee+65sNtoiPPnzwfs5ilJHeBa4mCrLrumer7wlmTw4MGD2LLFV5RG7wS6plpaWura HIuPj/cw7Qo34aEvGIbxcFV2h1IK446XXd5okvRhkLQJLvC4zWYL2g03WrAV+aAGxwwt+4aclpSV B+8PHQSCUo0ylNIj+/bt48VWtSbCEpFpAJlzs4oxOxIBholcLg+7jYYoLy9HXl5eQHWJWAZZpztd Zesfy+rV2bx5c4PtDRw4EOPH17pmNmRTGiw5OTl+bXvz8vKwefNmzvo0m80+Y7xa/1gGpmbtWSSF auTrQY9SN2zYAD6WrQCHz/+ZM2c4a89emOU633eBtQHgJ7OiEyGdSpQhhMRJpdJik8kk5TrrJ8uy IISAEIKqH8aCKXaYlGjvXQdJavBBRupSVVUFnU7nv2IEsF8/geqlTqUoliHuL/s9RujFxcVBRav6 6KOPMG/ePJ/rkYBvO9XCwkJs374dc+bMCbi/UGQMBabiIqp+GO3aCZf3fRyqYf7jrEaSoqIiNGnS hDMnE/26h2A7vxl2hiL15VK7zW5PopQGZxAdBMJINcpQSitlMlk5HzEA3EO9iZrUGrszpdyMML77 7jvYbD7Tn0cUSfMeELdwbpowVpgPf+7xerDK6m9/+5tLoer1evzvf/9zvVZdXe0xtS4tLXVZWgCO gDYPPlibJjtQuFKovmL0UpaBccuTLoUqSmgH5aBnOemTS1q0aMGZQqV2M2wXHfFwz96wQ6VSlvCp UAFBqcYEMpnsIF/5zY1GI2w2G8SJbkq1LLBptT+eeOIJSKX85jBaunRpwD75yv5Pus4tJ5Zg729r sW3btrBl0Gg0HmvICoUCvXv3do1SExMT8cQTT7hel0qlYYXw27ZtG7KysvxX9ILdbscnn3zi9TXz /v/BfsWZnoSIoZ7wMYg0+KDl+fn5EdvYCxf7pX2A3fEjk12WAJFYErjNXYgISjUGqKio2PX777/z sll16NAhHD9+HGIeRqqR4Pbbb4darQ6orqTNKIib93AUGDO6GX/FmDFjGr4pBKRSacjpXwJhzJgx IcWABRwmad42Ea3nNsH8e208CMWApyBJCS3bwt69e3mL+7p7925Ovcys+bWbj7sL1Ux5eXngaRxC RFCqMQCl9MjOnTt5UarDhw9Hv379IE6qjaXJFP/BmWtmcXExCgv9+9yHik6nC3hTjBAC1YjXYGcc 742e/8U19eODUOxUA6XGVIkLA3im5DQMm/9W23b6cCgGPh1ye6EsbQTKLbfcwlkKFUopbOd/c5WP ni+3gOdNKkBQqrHC0by8PBWfJiqihLYgcsemEjWWgK3iRhGqVCq/EeW54NSpUwEtAxQxKVhd1MVV Nmx5GqyJtyDvvLNkyRJcunTJb72ysjKvgbXZqsuoXj0TcLrvinStoJ70GQhHAb25RqvVchZakrl6 GNTgSEnNSONx8fI1KQDegy0ISjUGoJRWqlSq4tzcXF7ar6qqwvXrNyBu3st1jXHL7x4OarXaZczO JykpKTh37pzfemlpaZj3+goQZ34lqr8K47bneQmaEorvf7DMmTMnoPgASqUSkyZN8rjGmspQvXom aI3Dh0wD9dRvQs49ZTQawZejCsDNqNwd90Ax5+X9oVAoeN+kAgSlGjOwLLt18+bNvNi3EULw+++/ e6Qctl/jRqlGivj4+AbXGW/cuOE6F6mbQjX2XVfZlvcLLIe8b940JtzfY12USqWHeRtrLIF+1V1g azYlRVJopnwNSdPQp9ZVVVXIyMgI+X5/fPjhh5zZB1PGCuuZ9a7y8iM2lmXZrQ3cwhmCUo0R9Hr9 yu+++67hEEshotVqMXXqVIjdleqVg5z2sWTJEvARGMYbp055hvgzm831UqXIMiZC1qN27c+0901H yhAO4XNN1RsbNmyA2Wyud62uImINN1C9arpbKEQC9YSPIE0bGlb/ycnJvEbVeuaZZwLelPSHrWCn K3iQSJuKLXuOG/V6/QpOGveDoFRjhx1nz56V8RVFHQAkLfq7wuQx10+ANQWXPqQhxo4dG7G4pDk5 OR4mPQqFwhU8xh3VyAVuoewoDL8+yuvGFd/MnTu3nv1mRkaGhyJiSs+g+sfbwNZYeBARVBM+Ciqa vzci8dlyGZfVfepflTwO+fn5EgC8uqfWICjVGIFSatZoNLs3btzIWx+Z+w5DnFxjRkNrU2hwAJ9p Vupyzz33QCQS4fDhww3aSxKxDOopX0EU5zR/YizQr5sD26W9nMgRiTVVb7Asixq75s6daxP02S7u RvXyKbWbkEQM9cRPIe9yV9j98RlABwAuXrzIWVusqRS287WmVNsvxUGlUu2mlPLiDl4XQanGEOXl 5T+uWLGClyUAwGGmI00b5irzMWorKSnhvE1fFBQU4MiRhi1kRMpEaO5aBVLjsmo3Q7/mflhPew82 0hg4cOAA9uzZ4ypTysL0+4fQr74P1OLM7CBVQT31m7BHqIDDM+8f//hH2O00BJcbYNY/lgOMYylK 3LwnFi5ZaywvL/+Rsw78ICjV2OLXbdu2yfhamxw+fDgk6W5KtSCT82nd8uXLI+ZtM3369Aaj2tcg jmsF7V0/gaideaAYKwwbH4PpwPt+wwQ2RKTXVGto3749nnrqKQAAayiGfs0DMO97yxV1iqiTob13 LWRtubPK4MvYv4aHHnqIk3Yoy8CS/V3thS4P4NixYxIA3GYRbABBqcYQlNIbCoXi3K5d/K37SVL6 gMgdMTxpdRGY69mctj9//nxev4C//fabKzkgIQSjRo0K6D5xQhto71vvEQPBnPUO9GseAGuM3Og6 HGpMjmpiBFhyf0LhF0Pw25ba6FbiFv2gm7kRkmbcxCPNzIzIMiRn2Ap2uJY/iCIBWUU6qFSqM5TS 4kjJICjVGEOv1//w888/87b289v2TFxU1JomWfMi9gPOCcnJyYiLi6t33Wg04v3332/wXrGuFbQz 1kPScpDrmr0gE1U/jAnp/xDJNdUNGzYgJ8eRDZQpPw/9mgdg3PwEdKQKzXWOr7Gi33xo7/4ZIm0K J31SSnlL6ldDfn4+p2H+3NPDyLrdh9XrfjFXVVUt5ayDABBC/8UYhJAuiYmJh4qLi1V8PNAmkwnG s1sg2v4oAEAU3wa6h/Zx/uVZtGgRHnroId4iw3vDarUG5I1DGRtMWe/Us12VthsP5YgFEMe14kvE sGBNZTAfeB+W7G8BttZQXqRrCdXYdyFNHx494UIkJycHrVu3hlar9V/ZD0zpGVR9N8JZItD+ZT+a pHW3VFdX30Ip9Z9qlyOEkWrsccpsNusPHeInmI7y/7d33uFRVOsf/77bWxIgoXdDE0QpBkO50osK AldQ1Ksi6r1YAL128F6xXMX6I1gBBQUBFRCwUUREagISEAQUA0IMBEghye7O9nl/f8xms5teZjfF +TzPPNk5c+acs5vZ7572vq/RiCY9xgBaaRuOmPdHwM+qnIwfP142od6yZQsqY20WLKibNm0qc26X 1FqY/jYHlgmfgExF7vY8JzejYOlACNuegWiveLQY7jnVTz75BNnZ2RDtFyHseAH5HyTAdfCDIEEl 6HtNQ/Sd26FtPxjHjh3Dli3y7G+X00l3efTs2VMWQQUA576iH0lt/Cgc+SMXzHwJQPjtqINQRLWO wczs8/lWLFu2zB2uOkhjgK1Z0YKV+6j8e6KbNWtW5VhTZZGQkIDu3btXnDGI5s2bV2j2qL1sOKKn 7oCu5+1FiaIHrkMfIv/DfrBvfQK+HPmGplWBmTGqd0sYf3oB+R9cA9dP7wIeIXBd0zoRUbdvgmnY /0A66Qeye/fusgTiy8vLw4oVER0x1xhffnrIjg5DwgwsW7bM7fP5VnGEh+PK8L8OQkTxFovll4sX LxrK8zxfE/5v7kzcafkcKhWBDI0R88+DII38IVIOHDiAnj17yuYkozocPXoUjRs3RqtWrcrM4z2b AmHHi/BllvRrq2kzALpuE6DtfD1UxvCFlL506RK+Wb0UN11JcP/2JcSckh0sVWw3GAc8Bm2n68M+ 3xlO7HY7Fi9eHNjFUOPytj4Jtz+QoabtIGjGLkPTpk2ddrv9CmY+KUsllUQR1TpK48aNd86fP3/Q XXfdFZbymUUUfNAPovUsAMA8djF0XcbKXs/Jkyfh9XrRtWvXKt23b98+5OTk4LrrqhY2uTTy8/Nx 5swZXHnlleXmY2Z4/tgK5+5XS58SITU0bRKhaTsQ2rYDoW7RC6Su2Y+FaLsAb+ZP8KbvQkHadriy TyHaWHIAqW7eC4ZrZkEbPwpEFQ8wN27ciNjY2Gr7ZY0ElZ0DrwjRdgH5H/YDfNLgzjJpNZZuOobH H398b35+/oAaV1BFFFGtoxDRuLZt236Wnp4enq4qAMee1+BMfhMAoGk/BFE3RWx/dIWIohi2rVnv vPMO/vGPf5S6iwAoDGm8F66DH8JzclNg/2dxdp0SMbjfFVDHdYWqSSeozM1BpqZQmeIAtRYgNYjU YK8D7CoAuwogWjMg5mfAl3cKvou/4P3NpzG5jxFNzKW8V40Bum5/h/7KO6Bp0avk9Qqo6me4bt06 dO3atcpTLbWN8P1suH6WVv3VLfog6tav0bNnT+vRo0dvY+avI90eRVTrKESkNplM53fs2BEXrjDG nkunsfbxPhjdXRr2R9/1I9SxXcJSl9frxfnz59GmTZty88nVe6moDo1GA5VKBZ/Phz///BMdOnQo Na9oOw/3ia/g/u3LElMDu9JcGNSpalMmZ/N8cHoY8U3L2BWhNkDbcRh0XcZCe9lIKRJuDansZxqJ zx6QpmPkckTtu3QKBR8PDizeWSYsx8+5jTBkyJAsu93ekpkjHkdbWaiqozCzz+PxzE9KSio9ipsM aBt3QOvLBwbOnQc/DFdVICJ8//335ebJzMzEJ598ErY2FKLT6QI9OI/Hg337ijx2CYIQ4gxbZWkB Q5/7EH3rV4i5L1VyTtJjClQx7SolqAUOEWdyihbM8h0iGgUP7zVGqFslwNBvBiyTPkejB47BcuOH 0HWbKIugAtIugszMzArzRWre++jRo7KV5dg9LyComtaJ0HQcjueff97pcrnm14agAkpPtU5DRM0M BsOZc+fOGRo3bhyWOjx/7oFt9U3SicaAmPsOVNuJcUMgOzsbO3fuxMSJEwEAaWlpSEtLw5gxYwAA LpcLoijCaDRCdObDef4orBmHESVmg4UsnEg7haNpGbixbyxY9OH3cwXwQoce8a1A+iioLK2gimkL VXRbqOO6QdWoY6164Xe5XFi0aFFI4ML6gjfzIKyrihxzR936DayGjmjRooXL7Xa3Y+ayHdCGkcjt zFaoMsx8MTo6+rvFixff8MQTT4RlVKFp0x/qplegIOMwzHDCdXgZjNfIsyJbFufOnUOzZs0ChgFn z55F69atw1pnZYmLiwsIKgB06NABwT9oGRkZ+OWXXzB+/HjsSD6I1q1b45S9I0aPng4A6O5yoada HXhvV0e2+RVS/LPW6XSYOnVq7TWomjAzHDuLPGdpO4+FpmUfLH3zTdFgMHzrcrlqRVABZfhf57Fa rfMWLFjgCJeTEiKCtve9+HCPNMvgOrAI7KrYSUlNsNvtgRDMHo9Htg3r4UCj0SA2tmgbVXx8PMaP Hx8479y5M0aPHh041+v1EbUiqypbtmyBx+MJnBORbJvvK2LevHmyleU58SW8Gf4w3qSGcdDTEEUR b775plBQUPCabBVVA2X4X8chIoqJiUlbs2bNZeEItwxIZpsFH/0NYr7k09Iw8Mmw91YVapc33ngD DzzwAMK1D7o0HA6HLPWxy4r8j/4Gtl8AAOh73wPT0BexZs0aTJs27bTVar0s0hv+g1F6qnUcZuaC goKXZs2aFbYFK1JrYQgSUddPC8PeW01OTobP50NKSgrCGUVWoXQeeOAB/PyzvB7KKkIuAXfsfS0g qGRuDuOAJwEAr7/+us1ms71Qm4IKKKJaL2DmZWfOnMnbunVr2OrQdZ8EVUwHfLRXALvy4ExdFLa6 AGlDvlqtRnR0NDIyMsJaV7ioLX+q1cXr9Qb85xqNxoALxXAj53PrvfgLXEG7VEyD54L0Udi6dSuO Hj2az8zLZKusmiiiWg9gZo/dbn941qxZtnD9CJNKA0PiIxjdXY/NRzW4YdoGEBFGj34G33yzQ/b6 CuchL7/8crRv31728hVKsmTJkpCIrMFzweHC6XSGRHmtCSx6IWx9ImCMoWn3N2i7jocoinjwwQdt NpvtEWaWN851dWBm5agHBwBVVFTUrytXruRwIfq8/NkjA7lj7K0McOCIj5/NX3/9Y43L37RpE2dn Z5d5ffny5Xzu3Lka16NQNbKzs3nTpk213YwKEZLnc+4bLaRjfjv25vzOzMyrVq1ii8XyO/xrRLV9 KD3VegIzi1ardcaMGTOcwau3ckIqNT746Sr8kbMSwD4AUq/45Mn/4a23vqtx+e3btw9ZSS/O5MmT 0aTJX3ePbDhITk5GXl5euXliY2NlHy0wM+SMDOzNOgrn3jcC58b+j0HdpBM8Hg8ee+wxu81mu5+Z 68SquyKq9Qhm/s7r9R5asmRJ2B4et6rQv6gIoMiyyOms+Qb1bt26lXtdr9dDr5eslC5cuIA68h0p k/owpyqKYpk+DoKp6H9TVVJTU3H8uDx+odnrgrBxJiBKnQl1y77QXy05Wf/www/ZZrMdZubwLThU EUVU6xn5+fkzn376aacgCBVnrgZ6feGUVCKAol6lwVC9FfrvvvsOhw4dqvJ96enpFUZKVSgdt7vI Fe+AAQOq5CLw0KFD+O67mo9K+vbti0GDBtW4HABw7n0dvmy/k3KNAeYxSSCVBoIg4IknnnDl5+fP lKUimVBEtZ7BzPu9Xu/2//znP2HZh/TQQyPQps09QSkC2ja+CQ/e06da5SUmJqJXr6p7WEpISMDV V9c1e6RQIhmjqrIwM954441q9/J79eqFxMTEatdfkWPwquI5/QOc+98JnBsHzYG6cTwAYP78+V4A 25i5pBPc2qS2J3WVo+oHgK4mk8mRm5vLclFQUMBJSUncsmVLVqvVPHTILAbA13a+hmcMacLW9Xex KIqVLq8qeSsiLS2Nly1bJlt5CpWjOv/D//3vf+zxeGSp31dwli+92z2wOFWw+mYWRR8zM+fk5LDF YhEAdOE68J0MPpSeaj2EmX9Tq9Wrn3/++RqHXPnjjz/w0EMPoUWLFpg9ezYyMzOh1+sx7sb2cP+5 F+unn8Fz43TwnNwM9/G1lSozNTUVX375ZU2bFiA+Ph533HGHbOXJRV2ZUz127Bg++0z+kDhffvkl UlNTq3TP7NmzZTHTZZ8Htm+mgx3SvD6Zm8N83dsBB91z5sxxE9FqZj5R48rkprZVXTmqdwBoYTQa C/bu3ctVRRRF3r59O48cOZINBgNrtVqGtNQfODp06MCiKLLtu8cDPYU/XrmMvXlnKlV+OHn55ZfZ 6XSGtY7K8MMPP9R2E5g5vJ93ZcuWuw327c8VbZ96szW7/9wTuLZ//342GAw2AC24DnwXix9KT7We wsznnU7nA3//+9+dwQsTFfH999/jiiuuwNChQ7F161Y4nU6UtkUrKysL+/fvh+naZ6Fq1BEAsPVw Dk6tuhcslj5v5nBIlrThjp30xBNPBHYJ1Ca1Oae6YMGCwJalcH7ehWUX/m9LY8+ePbIsbhXiOr4W rgPvBc6NA5+Ctk1/6ZrLhVtuucXucrn+xcznZatURhRRrccw8wqbzbZr7ty5ld64OmTIELzyyisY MGAA9Ho9tFptqfmcTifeeecdkM4M83XvAKTGTX2MiBOOwJmSVCJ/VlZWxCJwBocI+fnnn7Fu3bpy cjccgheBZs6cWe6eX7lZsWIFsrJKD9vdv39/jBo1SpZ6vOd+grDl0cC5tuMI6BMeCJzPnTvXk52d vYeZV8pSYRhQvFTVc4iopclk+m3Hjh1RVQ27kpaWhjvuuAP79+8v1amJ0WhEVlYWzGYzHCnz4dz9 SmGtcA55Fy37TJDhHchLZmYmWrZsGZG6tm/fHrHe6sGDB5GRkYFx48ZFpL7KIHccMV/Bn7CuvB4s ZAMAVLFdED3lK5BeMnNNTk7G0KFD7U6ns1Nd7aUCSk+13sPMmQ6H4/6xY8c6XS5Xle7t2LEjTp48 GSKoarU68EVRq9VYs2YNACmOuqbNAH+dIpbPmw5f3hmcPn1anjciE6mpqUhPT6/tZtQYr9eLtWuL FgZ79+5dZwT19OnTcDqdePXVV2Urk9022NbdGRBUMjaBZfyygKC6XC7cdtttdpfL9c+6LKiAIqoN AmZeabPZdldlGgCQwhg7nc6QNK1Wi+uvvx4GgwEOhwNJSdJQn1RqmG94H2RpCSLCfYmE/PV348dt 8s2lycENN9yAdu3aAQB8Ph9eeOEFhGs0Jncv1ev1Bn7gVCpVnY1qumPHDmg0Gjz55JOylMdeJ2wb 7oaY86uUoNbBcuMSqBsVmc4+++yznpycnD3MXHdC/pZFba+UKYc8B4CWJpOp4KeffuLKMnDgwBKr /tdeey0zM1+4cIFfeOEFbtOmDZ84cSJwj+fcAc6d3y6wMnt+9VQ+evSXStcZaYJXpTMyMnjDhg21 2Jryeffdd8t1OFMXkLt9os/D1vVTi1b632jBzl8+C8mze/duNhqNVtTR1f7ih9JTbSCwfxpgwoQJ jspMA6SlpZUwA7VYLIHeR7NmzfDMM8/g9OnTIQsimpZ9cKjRXfD6pN6f5vRGHN/wkozvRF6CV8Zb tWqFhISEwPnx48exY0f13RpWdZ8qM4fstPj8889DIovef//9EV18qirMjJUrVxb+iMPr9WL37t01 KE+EsOVReE5uCqQZBj0NfY+bA+culwu33nqr4HQ66+xqf3EUUW1AMPPK/Pz8Pc8880yF0wBJSUkl FqdMJlMgamgharW6hOcobjsE5r6SKatKRRim3wbnwSU1bX7YIaKQRaxOnTqha9eugfOUlBRs3Lgx cG6321GV7WrFOX78OA4fPhw437RpU8j5zTffjB49elS7/EhDRJgxY0bgh0qj0aCq8/iFMDMc25+F +9jngTR93/thSAiN6vrf//7Xk5eXt4vrw7Dfj7L638AgohYmk+noypUrmwQHqAtGEAQ0a9YMdrs9 kGY0GvHss89Wep6MRR/sX90Dz8nNhTXD1v81pJzVY9KkSTV9G3WC1NRUWK1WDB48GACwc+dOuN1u DB8+vNTzH3/8EV6vN3CemZkJg8GAcIUXjxSbNm3CqFGjZFvplwT1v3Ad/CCQprviNphGvh4ysli2 bBmmT5+e43A4ejDzBVkqjwCKqDZAiCjBbDZv37Vrl6k0ZyZLlizBrFmzYLPZAmkGgwEZGRllDj83 bdqE3r17o3nz5oE09giwrp4E3/mDUoJKC/uAN9GmX8MQVQVJAFNSUip0snLhwgUcPHiwxEinZHki hO+fhvtwUdQTbeex0iKoqsi95JEjR9CvXz+n0+m8lpn31+xdRBZl+N8AYeb9Dodj+siRIx3FHQUz M+bNmxciqCqVCuPHjy93Pq9z584hggoApDXBMmFZwOIKogfmvY/Dk74TzFztoWF9oa7Y/ocTIqqU 16rmzZujc+fO5eZh0Qdhy6MlBfX6d0IENTs7G6NGjRJcLte99U1QAUVUGyw+n2+5IAgLx40bZw9e HElJScG5c+dC8hoMBjz22GPllhcfH19qusoUh6jJq6GKbuuv2Anb+ruQ++v3WLx4cc3ehEKtIIoi nnvuOVR1FFvWMwJIjqbtG2fAffTTQJqu20SYb3gPpNYF0jweD2644QZ7QUHBQlEUI2OiJzPK8L8B Q0TqqKiorZMmTUpcsmSJAQBuuukmrFu3LuQLc/nll+PYsWMl7t+2bRuioqJCVszLwpefDutnE8E2 v2BrjLDc+CG0HYbK9G4UIgkzV9unwP79+2G1WjFs2DAAgOjMh/3LafBm7Ank0fWYIs2hqkIjSkyd OtW1Zs2aFLvdPoyZ62XscqWn2oBhZp/Vap3w6aef5r7//vu+ixcv4ttvvw0RVIvFgqeeeqrU+xMT EyslqACgjmmHqMmrQeZmUoLXAdv6u+D+7UswMxYsWABRFGv8nhTCg9PpxNdffx04r4mTloSEhMCU gViQAetnN4YIqv6qu2Aa9UYJQX3//ffFNWvWXLDb7TfWV0EFlJ7qXwIi6mIymX6aMmVK1MqVK0Os qKKionDx4kUYDIZAWk16Kb5LJ2FbcwtE69nC2mEa8SqEtjfU+1Xw4kTS9j/c5OfnIy8vT9YAgN6L R2D94h+AUBQW2zDoaRgSZpR4vrZt24Zx48ZZBUHoy8y/y9aIWkDpqf4FYOYTgiDcvHTp0hBB1el0 uO+++0IE9ciRI/jiiy+qXZe6cTyipmyAqkmnwtohbH0chmMLwf547QcPHizVgYtCZPH5fMjOlmzt Y2JiZBVU9/EvYP30RmzYm45jmR5ApYX5undg7DezhKCePn0a48aNcwmCMKm+Cyqg9FT/MhDReACf AQg4IjUYDDh+/Dg6dOgQyFeTXmowopAN27rb4btQtNld23kszGOScOiX3xAXF4e2bdvWuB6FPbeu cAAAGQhJREFU6rN9+3Y0bdpUVgME9nng2PkCXKlBi5S6KFjGfwRt2wEl8mdnZ+Oaa66xnz179lmn 0/lGiQz1EEVU/yIQ0R4A/YPThg4dim3btgEAbDYbLBaLrHWyywrbN/+C9/QPgTR18ythGf8xVJYW AIC8vDxotVqYzWZZ61YoHZfLFTYH36I9C/Zv/gVvxt5AmqpxvOQcJbZLiWcsNzcX/fv3t2dkZLwn CMIT3EDESBn+/wUgoi4AQqwAVCoVHnroIQCSsK1aJb8VIOmjYJmwDPreRdFZfRcOo+CTUfCk7wIg fcnl9BofSerjPtW33347LPuHPWd+RMEnI0MEVRs/BtG3bYQ6tgsAYNWqVcjLywMAFBQUoF+/fo6M jIyPG5KgAkpP9S8BEb0L4F4AwW7+Hd27d+d9+/aZItFLdP38MYRtc4DCRV1SwdD/URiueTgQzA2Q 5teCpyPqMvVlocput4dtJMBeFxy7X4brwMKgVIJh0FMwJDwU8r8txGazYfDgwfYTJ058ZrPZ7m1I ggoootrgISIzgIsATEHJAoD/WiyWvj169Bi/detWk9xD/9LwpO+C/dv7A46IAUDTfjDMY96CytwU ALB27VqMGDECMTExYW/PX4HU1FTk5uZixIgRspfty/kN9m8fhC+ryNMWmeJgHrOgzP3JVqsVQ4YM EU6cOLHeZrPdwYWrlw0IRVQbOET0TwBvAAhWTSeAVgAKLBbL0rZt2960d+9eUySETLSdh/2b++E9 m1zURmMTmIa/Al2XsSF5MzIyYLfbQzxJKVRMWloa4uPjwxYQkH0eOA+8B+fe/wN8RbtJNB2Hwzzq /wI/kMXJz8/HgAEDhDNnzqyz2+13NkRBBZQ51QYNSd+qJxEqqD4Aa5j5EjP7bDbb1DNnzqxKTEy0 5+bmhr1NKksLWCavhqFfkYs3duTC/vV9sH/7AETHpUB6bGwsCgoKwt6m6lIX51SZucyYY3LgPX8I 1hVj4Nz1cpGgqvUwDv0fLBOWlymoubm5GDhwoP3MmTMrGrKgAkpPtUFDRIMAbESoqAoABjLzoaB8 ZDab57du3fqeXbt2mZs2Lf2LITeeMz/CvvnfRaatAMjcHKahL0Lb+YYSPa3PP/8cPXr0qDM+SOvK nOqWLVsQFxeHPn36hK0Odtvh2POq5K4vSA/VzXrCPOYtqOPKHk1cuHABCQkJjtzc3EV2u/2RhjaH WhxFVOshRNQWwDIAzSCFQVnEzAuI6DUAYwG4AZyEtCd1DEJHJE4AS5n5AX9Z4wC8CGCfyWTKMhgM j3z//feG0lwGhgPRmQ/H9v+GOCsGAE37ITANewnqxh1D8wdF8Dx58mS5TjwaMpcuXQpYqAmCAJPJ VMEd1YNZhPvYajh2vQS2F1lGQWOAccCT0Pe5F6TSlHn/0aNHMWLECCE/Pz/J4XA8D+BHSM+lDsAG Zn6aiCYDmAugG4AEZk4FACLqAOA4AH/wKuwt7bll5vvkfM81RRn+1088AB5h5h4AEgE8SESXA9gC oAczXwXgLIDRCP0fWwHcW/hg+rkdQG8AmYIgrMjLy5s+aNAg4auvvorIG1EZYmAekwTzjUtBpqIe svfMdhQsGwrHntfBHqEof5Cj5P3799fIM3995ddff0VKSkrgPFyC6slIhnXFGAibHw4RVE37axF9 53YYrp5erqB+9dVXSExMFLKysu4XBGE2MzsBDGXmXgCuBDDUP5o6AmAigNJi26Qxc2//UepzS0R1 Y+jiRxHVeggzny8cvjOzDdKveStm/i5orqq0MTwDWFMsTQWp52AC4Pb5fB/b7fbhU6ZMyX3xxRe9 kRrJ6DqNQfTUndBfdTcA/7Df54Iz+Q3kLxkA1+FPwKI35J4pU6ZAp5PcxmVlZeHtt9+OSFsLidSc qsPhwLx58wLn3bp1q9AZdE3wZf8G21f3wvb5RPguHgmkk7k5TGMWwPL3T0MinRaHmTFnzhzvzTff nGez2YZ5vd5lQdcKfyF1ANQAcpn5V2Y+UcVmhjy3Vbw3rCiiWs/xD5F6A0gJStMA+DukhzYYB4DN /t5BIYsA7ATgK7S7ZuZkQRCunDdv3skJEyY4BEFAJFAZYmAa/hKibt8IdfOi6Qe2X4Cw9XEULBsK d9rGUv18Nm3aNGDMAEjDzs8++ywi7Q4H8+bNC/hpMBqNZXoSkxNfzm+wfTMdBcuGwvP7N0UX1AYY rnkEMXfvhr775HJ3FQiCgEmTJjkWLFhwwul0XsHMKcHXiUhFRIcAXADwAzOX9DkZSkciOkhE2yt6 busKypxqPYaILAC2A3iRmdcHpa8EMBlA8NjMBaALgDgA6yFNE1grKN8YFRW1om3btqM2b95sbtOm jdxvoUxY9MH9yyo49r4OtoeGJ1I3uwKGfrOg7Xx9qZvLS2PXrl0QBAGjRo0KR3NrzHvvvYeJEyei RQvJfFcuHwyVwZd1HI59C+D5bQOkwUwRum4TYRw0G6roiv/36enpGD58uHDhwoWNVqv1DmZ2lJWX iGIAbAbwFDNv96f9AODRoDlVHQAzM18ioj6o5HNb2yiiWk8hIi2ArwFsZOb5QelTAbyF0BV/BrCV mUf584Q8vBXUQwaDYbZWq31mw4YNhqFDI+t0mj0CnKmL4Nz/DuC2hVxTNekEQ8IM6LpNBKm1ZZRQ Ops3b0ZUVBQGDJCcfBw7dgyxsbElQsbIxalTpxAdHY24uDgAwPLly9G/f3906tSpgjvDA7MI7x8/ wJm6CN70klOZ2stGwdD/UWiaX1mp8vbs2YPrr79ecDgc/3O73S9XZoWfiP4DwMHMr/vPy30uq/Lc 1iaKqNZD/PtPPwaQw8yPBKWPAfA2gNYADEG32AH8nZm3ENFlkBYErmDmvCrUOdZoNH769ttvm6ZN mxaZLlQQoiMHzpQkuA4vB7zOkGtkbgH9lf+Avuc/oLJUTxTT0tKg0+nQrl07AMD69evRoUMHFO6C +OKLL9C5c2f07NkTgLSN6fz587jzzjsBSIsy7du3x5VXSiK0du1adOnSJZB/37596NixIyK1Xa0s 2GWF+9cv4ExdDPHSyRLXtZeNhCHx39C0qPzujyVLlvCMGTPsgiBMYeZvyspHRHEAvMycR0RGSD3V 55j5e//1HwA8xswHgvJfYmZfdZ/b2kAR1XqIf25pB4DDKBqvzQawAEALhPZSASAXQCakXQMigP+W 9/CXU+/lZrN5y4gRI2I/+OADY2GvK5KIQjZcqYvhPLQUcBcbBao00Ha6DvqrpkLTJrHSUwOVgZkh iiLUamma2mq1Yu/evYHpBLfbDa1WG7Ehe1VgZnjPJsP9y6dwn/gK8BYblZMK2k7Xw5DwYJXENDs7 G5MmTXLt378/WxCEkcx8vLz8RNQTUmdA5T+WM/NrRDQR0rMbByAfwEFmvo6IbgLwHGr43EYaRVQb EEQUBWkBwBiUbAcwh5mTZKrDZDabX1epVHd//PHHhokTJ8pRbJURnflw/bwUroNLwEJWieuqqNbQ dZsI3eWTyt2Y3pDx5f4O94mv4T62GmLeHyUz6KKg73kb9L3ugTqmar5t161bh2nTpjncbvcSv5ep yKxm1gMUUW1AENH9AF4DEOySyAGgJTPny1zXIIvF8umoUaOaLFy4sFZ6rQDAPjc8aRvhOrQU3rMp peZRN70C2i5jobtsFFRx3epkb1IOmBm+7OPwnPga7rRvIOaUvktJFdsN+p63Q9/jFpA+qkp1ZGdn 46abbnIdOHAg2263T2HmXXK0vSGhiGoDwT/P+geA4A2EXgArmHlqmOo0mc3m1wDcs3z5cn1t9VoL 8WUdh+vwMrh/2wB2Xio1jyq6LbSXjYL2shHQtO4H0lZ/43xdMFMVHZfg/XM3PGd+hPfMjxAL/iw1 H+mjpZ57jylQN7+qWj8sQb3TpYIgPK70TktHEdUGAhENhrQboLidfyIzHyn9LtnqrhO91kLY54bn 9A9wH18Lz8ktgK8Mp8wqLdQtekHbJhGaNv2haZUA0lXeBWJtiKpozYT3fCq8manwZuyF78LPIbb4 IWgM0HYYBl2XsdDGjwFpjaXnq4Ds7GzceuutzuTk5Bybzab0TitAEdUGAhF9DeB6BMyRAACHmLl3 hOo3WSyW15j5noULF+pvv/32SFRbIewqgPvkFnhOfQfP6R9KLm6FQFA1vgzqZj2haXYF1M16Qh3b BWRuHvEpA/Z5IOafhi/nhHRkHYU3MxVsyyz/Rq0Z2stGQtf5Bmg7DqtRTxyQeqd33323w+PxfCQI wmNK77RiFFFtABBRK0gOVIK3UVkB3MfMETUrIqJBZrN5Ve/evRslJSVZwuk5qaqwzw3v2RR4Tm6G J30XxJzfKnejxgh1o45QNe4IVaOOUJmbQ2VuBjLFQWVuCjLGgXSWSu2VZWbAYwe7CsCuAoiOXIjW cxBt58DWcxCtmfDln4F46RQgeipuG6mgbt4L2vbXQtPub9C0uhqk1lXufZVDcnIyZs2aZT927Ngl m812q9I7rTyKqDYAiOhFAI8iVFTzADRn5ojbRRORTqVS3avX61/q27evfsmSJYbOnTtHuhkVIgrZ 8GYk+4+98OX8VhTupRLsSnNhUKegIHoqjdQz1BhBGj3AIlgUpTLZB/i8YHdB2cP1yqA1QdP8Kqhb 9oWmZR9o2vSHytCo+uUV4/fff8fjjz8ubNmyxeN0Omcz82JmroS6KxSiiGo9x29ZdRFA8DfLBeAN Zp5TO62SICKzTqd7VK1WP3HbbbepX3jhBUPLli1rs0nlwh4HfNm/wnfxMLwXj8B38SjEvFNgV+mO skuIqsyQpRXUsZ2hju0CdZMuULfsDXVs13I9Q1WXc+fOYebMma5vv/3WK4riKy6X601mtste0V8A RVTrOUR0M4APAATvjXEC6MTMZ2unVaEQUazZbH7W6/X+c/r06aq5c+dqGzWSr3cVTpgZ7MyFeOk0 fHmnIOanQ7RfBAtZEO1Z0l9HDuARKt8D1RhB+mjpMDSCytICqqhW0mFpBVVUa6ibdKrydqfqkJeX h5deesnz1ltv+VQq1YeCIDzLzDlhr7gBo4hqPYeIUiF5qSqEAWxm5utqqUllQkTtLBbLy0Q0cc6c ObqZM2eqjcbqrUjXNZgZED1gjwPwCGCfCyCVZNVFakAlHaSLkmXOs6Y4HA7MmTPHt3DhQo9arf7C arU+xcyl78dSqBKKqNZj/GZ/yQiNlGoDcCMz/1A7raoYIuoeHR39fz6fb/DDDz+snj59uiaSHrDk oi7sU60qGRkZeO+997zvvPOOh5l3FhQUPFyRealC1VD8qdZvHoHk7DeYXEjuAOsszHwsPz9/tN1u 75uUlPRR586dHUOHDhU2bdpUqq9UhZrBzNi6dSuGDx8uxMfHOxcsWPBRfn5+Qn5+/mhFUOVH6anW U/z+KDNR0s7/KWaOrAv8GkJEUUR0u8ViebJRo0Zx//73v81Tp06l+jLvWlfJy8tDUlKSuHjxYsFq tWZZrdZXmHllXfdHWt9RRLWeQkQzAbyEknb+LZi57sZ1Lge/qe3AmJiYxxwOx3WTJ0/2Pfroo8be vSNiv9BgSE1NRVJSkmP16tWk1Wq3FhQUvAJgd0OPYlpXUES1HuIXn3QAwRORXgAfM/O9tdMqeSGi 5jqd7p9arXZWmzZtdMOGDTM/+OCDqu7du9cZhyh1ZU6VmXHs2DFs2LBBXLRokTMrK8vh9XqT3G73 Ima+UHEJCnKiiGo9hIiGQwotEWyo7oAU3vdo7bQqPBCRGsAws9l8M4CJUVFRhvHjx2snTZqkGzx4 MLTaqnn8l5PaFFWPx4Ndu3Zh6dKl7m+//dbndDoFAF/Y7fbVALYxV8GKQUFWFFGthxDRZgAjEWrn /xMzJ9RSkyKCv4d+pUajmWAyme7wer1tRo8e7Z08ebL5uuuuQ0Ofg83Ly8P69euxfPlyR3Jyskqn 05222WwrvV7vegBHlOF93UAR1XoGEbUFcAIl7fynMXPx8NMNGr/Pg7ExMTF3CoJwdd++fV1jxoyx 9OnTR5WQkBAIoldfOX/+PJKTk7Fx40bx8OHDttTUVL3JZErJy8tbAeBrZj5X221UKIkiqvUMIpoH 4GFIMc8LuQTJzv8va6NNRGYAI3Q63SCTyTRUEITLzWYz+vbt673qqqss1157rapfv36yCq2cw//z 58/jwIEDSElJETds2OD8888/IQgCTCbTLzabbYfH49kFKXijYjpax1FEtR5BRHpIdv7RQclOAK8y 87O106q6iX+qoAOAvlqt9hqLxTJYEIQeJpMJ7dq1w8iRIw3dunVTtWrVCi1btkSrVq0QFxcHlary W7erIqqiKCI7Oxvnzp1Deno6Ll68iPT0dHH37t22lJQUvcfj8UVFRf1SUFDwo8fj2QfgAIDTypC+ /qGIaj2CiG4D8D5C7fxdADoycwWONhWChVatVveOiorqpFar27nd7rYejyfG4/GYoqOjnSaTiTt1 6uSLj4/XtmvXzuDz+ahdu3YwGAzQaDRwOByIjo6GWq2G1+tFTk4ODAYDmBkulwv79u1jr9frPHv2 rOfs2bOckZFhEARBq9frBb1enwMgm5lP2u32NK/XexCKgDYoFFGtRxDRzwCCA7EzgG+YeVwtNalB QUQ6SNFoWwFoCaCVRqNpbTKZOqhUKp1KpdIQkVYURSNJAIBHFEWGtPvCK4qi02azpft8vrMAzkEy 0DgH4HxtuGFUiDzy+xBTCAtEFA1pHtUGydZfBSlcyqu12a6GhF/00v2HgkK1UGz/6wl+K6nLAYwB 8CUAN6Rw1IpHdgWFOoQy/K+nEFFzAK2ZObW226KgoFCEIqoKCgoKMqIM/xUUFBRkpE6LKhHNJaJH a7sd5UFEg4mof1XzEdG/iOiO8LZOQUEh0tRpUYW0ZajS+J1vRJqhAAZUNR8zL2Tm5WFrlUK1IKK2 RPQDER0lol/8LhZBRJ8R0UH/8QcRHQy652ki+p2IfiWiUUHp44joZyJaXBvvRaF2kE1UiWgdEf3k fxDvKyPPaSJ6hYgOE1EKEcX70zsQ0Tb/A7jVb99e/N77iGgfER0iojVEZPSnf0RE7xNRMoBXit3T gYh2ENEB/9Hfnz6EiLYT0WoiOk5EnxRr41x//sNE1NWf3oSI1vvbuJeIehJRBwD/AvCI/8s2iIjG ElEyEaUS0XdE1KyMfIFeOBH18t/zMxF9QUSN/OnbiWie/7P6jYgG1eifpFAZPAAeYeYeABIBPEhE lzPzLczcm5l7A1jrP0BE3QHcAqA7pJ0Z7xZuYAVwO6T4YZlE1CPSb0ShdpCzpzqNma8GkABgJhE1 KSUPA8hj5isBvA1gvj/9LQBLmfkqACsALCjl3rXM3I+ZewE4DuCeoGutAPRn5seK3XMBwEhm7gtg SrFyewGYBenLcBkRFfYiGUCW/573ABSW+RyAA/42zgawjJlPQ7JwetP/hdsFYBczJzJzHwCfAXii jHyMop74MgCP+8s+AqDQ5JQBqJn5Gkj2/oopaphh5vPMfMj/2gbpWWtVeN0vmDcDWOVPGg9gFTN7 /P/nNADX+K+pIO0tNkHaAqfwF0BOUZ1FRIcA7IXkPLlzGfkKH8ZPARTOMSYCWOl//QmA0npkPYlo JxEdhtQD6O5PZwCryzDx0wH4wH/P55D2eRayj5nP+e87BMl8sZAv/H9Tg9IHAlgOAP6gerFEVGgu GuyCry0RbfHX+VhQO4vnkxKkTf0xzLzTn/QxgGsraItCBPCPMHoDSAlK/huAC8x80n/eCkBG0PUM AK39rxcB2AnAx8y/h7WxCnUGWSyqiGgIgOEAEpnZSUQ/INSLUlkEC2FZ7twL83wEKUroESK6C8CQ oDxCGfc+AiCTme/wz7c6g665gl77EPpZuMpIr4zL+bcAvM7MXxPRYABzK3FPMMXrKKstCmGEiCwA 1gCY5e+xFnIrijoAZcEAwMxbAVwdnhYq1FXk6qlGA7jkF9RukHqeZXFL0N89/td7IA3PAakXusP/ mlAkMhYA54lIC+AfqNwiVjSA8/7XdwKoyULWTn/bCn9EsvwB1KwIdXASDcnWGwCmBqUXzwdI+4QL AFwKmi+9A3U8GmpDx/+MrQXwCTOvD0rXAJgIaVqnkLMAgtcA2vjTFP6iyCWqmwBoiOgYgJchTQGU RWOSHIPMgNSThP/13f702yHNdQKh847/gTQM2wVpniuYsgT2XQB3+aclukKym6/onuLlFuabC6Cv v40vAbjLn/4VgImFC1D+fKuJ6CcAWUH3F+ZLDRLQwmt3AXiNihymPF9OexTCiH/O9EMAx5h5frHL IwAcL+Yc+ksAU4hIR0QdIU177YtMaxXqIhG1qCKiPwD0ZebciFWqoFAF/D94OwAcRtGP2NPMvImI lgLYy8yLit0zG8A0SMEXZzHz5ki2WaFuEWlRPQXgakVUFRQUGiqK7b+CgoKCjNR1iyoFBQWFeoUi qgoKCgoyooiqgoKCgowooqqgoKAgI4qoKigoKMiIIqoKCgoKMqKIqoKCgoKMKKKqoKCgICOKqCoo KCjIiCKqCgoKCjKiiKqCgoKCjCiiqqCgoCAj/w/qD62nNqnM/AAAAABJRU5ErkJggg== )