Files
ailearning/docs/da/084.md
2020-10-19 21:08:55 +08:00

36 KiB
Raw Blame History

处理文本(数学表达式)

在字符串中使用一对 $$ 符号可以利用 Tex 语法打出数学表达式,而且并不需要预先安装 Tex。在使用时我们通常加上 r 标记表示它是一个原始字符串raw string

In [1]:

import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline

In [2]:

# plain text
plt.title('alpha > beta')

plt.show()

![]( AAALEgAACxIB0t1+/AAAEMdJREFUeJzt3X2MZXV9x/H3x11QqVK0m9K6YLG69aEKVcqD1YZrITpg K9YmpetTQRNpE2ht0or4h4xJtcGmrTEmSOlKbBvdWqGChkBNdYolgKzhQWWX7Iq0u4siD2qJ0mSX /faPe9gdhp37MHvnzvLj/Upu9px7fuec7/xy7+f+9nfumUlVIUlqy9NWugBJ0uQZ7pLUIMNdkhpk uEtSgwx3SWqQ4S5JDTLcddBIcnaSr0267XJJMpvkn1ayBmkxhru0dEu+ScQPBi03w11PeUmeleSZ S9l14sVIE2K4a6qSvD/JtiT/m+TbSd48oO2eJOcn+U6S+5N8NEkWtPnrJA8luTvJzLznz0lyZ3ee 7yR5z4CyXgHsTPLJJCeN8eMU8IwkG7vzfCPJsfNqeF6SK5L8oKvv/O75GeBC4KwkDye5dQk1SwMZ 7pq2bcBrq+pw4EPAPyc5ckD7NwPHA68CzgTeNW/bScAW4OeAjwIb5m27D3hjd55zgL9L8sr9naCq buyO/z3gM13A/kWSXxjys6Sr6XPAc4DPAF9IsirJ04AvArcCzwNOBd6b5PVVdS3wEWBjVT27qh6r a+SapWEMd01VVX2+qr7fLX8O2Eo/pBdzcVX9qKq2Ax8D1s/b9t9VtaH6vyDpH4FfTPLz3bGvqarv dsvXA/8O/OaAuu6pqg9V1QuBPwJeAmxO8sUkRw+ob1NVXVlVjwJ/CzwDeDVwArCmqv6yqnZ3tfwD 8AfdfmHBtM64NUuDrF7pAvTUkuSdwJ8Bx3RPPYv+yHsx2+ct/w/9UfBjvv/YQlX9tJuxeRbwgySn AxcB6+gPYg4D7hixzM1d2xOAl3X7LmbHvBoqyY6uxgKel+SH89quAq5f7EAHWLP0OIa7pibJLwF/ D/wWcGMXhrcy+MLk8+mH7WPLO0c4z9OBK4C3A1dV1aNJ/m3Qebp9fgf4Q+C1wFXA+VX1n0NOt3dU 303FHNXV+Cjw3ar6lUX223OgNUuDOC2jafoZ+iPaB4CnJTkHePmQff48yRHd1MifAP8ywnkO7R4P AHu6EfHrF2vcXQS9FzgfuBI4qqrOHiHYAY5P8rtJVgPvBf4PuAm4BXg4yfuSPLObh395kl/v9rsP OGbeBeKxapaGMdw1NVV1J/A3wI30p1ReDvzX/CY88bvjVwHfoH9h8kvsu2i6v7bVnedh+h8EnwMe oj9Pf9WA0u4DTqiqU6rq8qr6yag/EvAF4KzuPG8D3lJVj3Zz8L8N/BpwN3A//f+1HN7t+6/dvw8m 2bSEmqWBMuyPdST5FPBG4AdV9YpF2nwcOB34KXB2Vd066UL11JNkD/Ciqrp7pWuRnmxGGblfDsws tjHJGfTfgOuA9wCXTKg2SdISDQ33qvoa8MMBTd4EfLprezNwxJDvLUuj8m9ASks0iW/LrOXxX1fb Qf8bA/dN4Nh6CquqVStdg/RkNakLqgu/ruWIS5JW0CRG7juZ911f9n3P93GSGPiStARVNfb9DpMY uV8NvBMgycnAj6pqv1MyVeWjiosuumjFazhYHvaFfWFfDH4s1dCRe5LPAqcAa5Jsp3979CFdWF9a VdckOSPJNuAn9H/hkSRpBQ0N96paP0Kb8yZTjiRpErxDdQX0er2VLuGgYV/sY1/sY18cuKF3qE7s RElN61yS1Iok1ApdUJUkHWQMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJ apDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QG Ge6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJatDQ cE8yk2RLkq1JLtjP9jVJrk1yW5JvJTl7WSqVJI0sVbX4xmQVcBdwGrATuAVYX1Wb57WZBZ5eVRcm WdO1P7Kqdi84Vg06lyTpiZJQVRl3v2Ej9xOBbVV1T1XtAjYCZy5o8z3g8G75cODBhcEuSZqu1UO2 rwW2z1vfAZy0oM1lwFeS3As8G/j9yZUnSVqKYeE+yjzKB4DbqqqX5IXAl5McV1UPL2w4Ozu7d7nX 69Hr9cYoVZLaNzc3x9zc3AEfZ9ic+8nAbFXNdOsXAnuq6uJ5ba4BPlxVN3Tr/wFcUFWbFhzLOXdJ GtNyzblvAtYlOSbJocBZwNUL2myhf8GVJEcCLwbuHrcQSdLkDJyWqardSc4DrgNWARuqanOSc7vt lwIfAS5Pcjv9D4v3VdVDy1y3JGmAgdMyEz2R0zKSNLblmpaRJD0JGe6S1CDDXZIaZLhLUoMMd0lq kOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ 7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEu SQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGjQ03JPMJNmSZGuSCxZp00tya5JvJZmbeJWSpLGkqhbf mKwC7gJOA3YCtwDrq2rzvDZHADcAb6iqHUnWVNUD+zlWDTqXJOmJklBVGXe/YSP3E4FtVXVPVe0C NgJnLmjzVuCKqtoBsL9glyRN17BwXwtsn7e+o3tuvnXAc5N8NcmmJO+YZIGSpPGtHrJ9lHmUQ4BX AacChwE3JrmpqrYeaHGSpKUZFu47gaPnrR9Nf/Q+33bggap6BHgkyfXAccATwn12dnbvcq/Xo9fr jV+xJDVsbm6Oubm5Az7OsAuqq+lfUD0VuBf4Ok+8oPoS4BPAG4CnAzcDZ1XVnQuO5QVVSRrTUi+o Dhy5V9XuJOcB1wGrgA1VtTnJud32S6tqS5JrgTuAPcBlC4NdkjRdA0fuEz2RI3dJGttyfRVSkvQk ZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGG uyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhL UoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNGhruSWaSbEmy NckFA9qdkGR3krdMtkRJ0rgGhnuSVcAngBngZcD6JC9dpN3FwLVAlqFOSdIYho3cTwS2VdU9VbUL 2AicuZ925wOfB+6fcH2SpCUYFu5rge3z1nd0z+2VZC39wL+ke6omVp0kaUmGhfsoQf0x4P1VVfSn ZJyWkaQVtnrI9p3A0fPWj6Y/ep/veGBjEoA1wOlJdlXV1QsPNjs7u3e51+vR6/XGr1iSGjY3N8fc 3NwBHyf9AfciG5PVwF3AqcC9wNeB9VW1eZH2lwNfrKor97OtBp1LkvRESaiqsWdEBo7cq2p3kvOA 64BVwIaq2pzk3G77pUuqVpK0rAaO3Cd6IkfukjS2pY7cvUNVkhpkuEtSgwx3SWqQ4S5JDTLcJalB hrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4 S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrsk Nchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0aKdyTzCTZkmRrkgv2s/1tSW5PckeSG5IcO/lS JUmjSlUNbpCsAu4CTgN2ArcA66tq87w2rwburKofJ5kBZqvq5AXHqWHnkiQ9XhKqKuPuN8rI/URg W1XdU1W7gI3AmfMbVNWNVfXjbvVm4KhxC5EkTc4o4b4W2D5vfUf33GLeDVxzIEVJkg7M6hHajDyX kuR1wLuA1+xv++zs7N7lXq9Hr9cb9dCS9JQwNzfH3NzcAR9nlDn3k+nPoc906xcCe6rq4gXtjgWu BGaqatt+juOcuySNaTnn3DcB65Ick+RQ4Czg6gUnfz79YH/7/oJdkjRdQ6dlqmp3kvOA64BVwIaq 2pzk3G77pcAHgecAlyQB2FVVJy5f2ZKkQYZOy0zsRE7LSNLYlnNaRpL0JGO4S1KDDHdJapDhLkkN MtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDD XZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwl qUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWrQ0HBPMpNkS5KtSS5YpM3Hu+23J3nl5MuUJI1j YLgnWQV8ApgBXgasT/LSBW3OAF5UVeuA9wCXLFOtzZibm1vpEg4a9sU+9sU+9sWBGzZyPxHYVlX3 VNUuYCNw5oI2bwI+DVBVNwNHJDly4pU2xBfuPvbFPvbFPvbFgRsW7muB7fPWd3TPDWtz1IGXJkla qmHhXiMeJ0vcT5K0DFK1eA4nORmYraqZbv1CYE9VXTyvzSeBuara2K1vAU6pqvsWHMvAl6QlqKqF A+ihVg/ZvglYl+QY4F7gLGD9gjZXA+cBG7sPgx8tDPalFidJWpqB4V5Vu5OcB1wHrAI2VNXmJOd2 2y+tqmuSnJFkG/AT4Jxlr1qSNNDAaRlJ0pPTxO9Q9aanfYb1RZK3dX1wR5Ibkhy7EnVOwyivi67d CUl2J3nLNOublhHfH70ktyb5VpK5KZc4NSO8P9YkuTbJbV1fnL0CZU5Fkk8luS/JNwe0GS83q2pi D/pTN9uAY4BDgNuAly5ocwZwTbd8EnDTJGs4WB4j9sWrgZ/tlmeeyn0xr91XgC8Bv7fSda/Qa+II 4NvAUd36mpWuewX7Yhb4q8f6AXgQWL3StS9Tf/wm8Ergm4tsHzs3Jz1y96anfYb2RVXdWFU/7lZv pt37A0Z5XQCcD3weuH+axU3RKP3wVuCKqtoBUFUPTLnGaRmlL74HHN4tHw48WFW7p1jj1FTV14Af Dmgydm5OOty96WmfUfpivncD1yxrRStnaF8kWUv/zf3Yr69o8WLQKK+JdcBzk3w1yaYk75haddM1 Sl9cBvxqknuB24E/nVJtB6Oxc3PYVyHH5U1P+4z8MyV5HfAu4DXLV86KGqUvPga8v6oqSXjia6QF o/TDIcCrgFOBw4Abk9xUVVuXtbLpG6UvPgDcVlW9JC8EvpzkuKp6eJlrO1iNlZuTDvedwNHz1o+m /wkzqM1R3XOtGaUv6C6iXgbMVNWg/5Y9mY3SF8fTv1cC+vOrpyfZVVVXT6fEqRilH7YDD1TVI8Aj Sa4HjgNaC/dR+uI3gA8DVNV3knwXeDH9+2+easbOzUlPy+y96SnJofRvelr45rwaeCfsvQN2vzc9 NWBoXyR5PnAl8Paq2rYCNU7L0L6oql+uqhdU1Qvoz7v/cWPBDqO9P64CXptkVZLD6F88u3PKdU7D KH2xBTgNoJtffjFw91SrPHiMnZsTHbmXNz3tNUpfAB8EngNc0o1Yd1XViStV83IZsS+aN+L7Y0uS a4E7gD3AZVXVXLiP+Jr4CHB5ktvpD0TfV1UPrVjRyyjJZ4FTgDVJtgMX0Z+iW3JuehOTJDXIP7Mn SQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJatD/A8TB+T0A8shJAAAAAElFTkSuQmCC )In [3]:

# math text
plt.title(r'$\alpha > \beta$')

plt.show()

![]( AAALEgAACxIB0t1+/AAADvVJREFUeJzt3XGMpHV9x/H3p3dgg5WivYS0BwaVixUjVI2ItdUxkLjS RBqbSk7UiDYSE0yTNhHxD9l/tOGPJsaYUEKQGJt4aRRTagiEVCcagiiNgNQ7cldLcwfWCio1Stq7 8u0fM9yty93OzO7s7PHl/Uo2mWee3z7z21923/fwzD5LqgpJUi+/sdUTkCTNn3GXpIaMuyQ1ZNwl qSHjLkkNGXdJasi4S1JDxl2SGtq+1ROQnguS/AHw8vHmrqq6fivnI03imbuel5JcmeSMKce+Bjij qm6tqluBt2/u7KSNM+56vvoqcEWSjyc5d8LY86pqCJDk9cBDmz05aaPi35ZRN0l+D7gSuB94C3AD 8DjwW1X1n6vGbgf+HNgFDKvqm6v2/y7wCuBJ4C+AlwFXVdWPNvvrkDbCuKuVJC8Evg5cWlVPJHkD 8Angi8DXqup/1/jci4GPAH9dVf8xfu5Px593ZLz9EeAlVfWpTf5SpA3xDVV1cznwL1X1xHj7J8Cr gTpR2JOcCryb0Vn53z4T9rHffCbsY+cB++c/bWm+jLu6OQU4sGL7hcD/VdVXVw9M8jvAFcBpwJ6q +vvjHO8twJ7x+B3Amxj9l4B0UvOyjFpJcjpwDXA3o9D/EvgQcBejgP9qPO6vgP8BvlhV/32CY70a OBd4EfAr4Hzg5qo6uNlfh7RRE+Oe5PPAnwD/VVWvOcGYzwLvYPQD8IGq+t68JyotWpJ3V9U/bPU8 pPWY5lchbwGWTrQzyaXAuVW1C/gwo99MkDp4eqsnIK3XxLhX1beAn60x5J3AF8Zj7wXOSHLmfKYn bZ2q+vJWz0Far3ncxLQTWHkN8hBw1hyOK0lap3ndoZpV275LK0lbaB6/CvkocPaK7bPGz/2aJAZf ktahqlafQE80jzP324D3AyS5CPh5Vf34eAOryo8qrrvuui2fw8ny4Vq4Fq7F2h/rNfHMPcmXgLcC O5IcBK5j9PvDVNWNVXV7kkuTHGD0O8VXrns2kqS5mBj3qto9xZir5zMdSdI8+Cd/t8BgMNjqKZw0 XItjXItjXIuNW9ifH0hSi3otSeoiCbVFb6hKkk4yxl2SGjLuktSQcZekhoy7JDVk3CWpIeMuSQ0Z d0lqyLhLUkPGXZIaMu6S1JBxl6SGjLskNWTcJakh4y5JDRl3SWrIuEtSQ8Zdkhoy7pLUkHGXpIaM uyQ1ZNwlqSHjLkkNGXdJasi4S1JDxl2SGjLuktSQcZekhoy7JDVk3CWpIeMuSQ0Zd0lqyLhLUkPG XZIamhj3JEtJ9iXZn+Sa4+zfkeSOJPcneSjJBzZlppKkqaWqTrwz2QY8DFwCPAp8F9hdVXtXjFkG XlBV1ybZMR5/ZlUdWXWsWuu1JEnPloSqyqyfN+nM/ULgQFU9UlWHgT3AZavG/Ag4ffz4dOCJ1WGX JC3W9gn7dwIHV2wfAt64asxNwNeTPAa8CHj3/KYnSVqPSXGf5jrKJ4D7q2qQ5BXAXUkuqKpfrB64 vLx89PFgMGAwGMwwVUnqbzgcMhwON3ycSdfcLwKWq2ppvH0t8HRVXb9izO3Ap6rq7vH2PwPXVNV9 q47lNXdJmtFmXXO/D9iV5JwkpwKXA7etGrOP0RuuJDkTeCXww1knIkmanzUvy1TVkSRXA3cC24Cb q2pvkqvG+28EPg3ckuQBRv9YfKyqfrrJ85YkrWHNyzJzfSEvy0jSzDbrsowk6TnIuEtSQ8Zdkhoy 7pLUkHGXpIaMuyQ1ZNwlqSHjLkkNGXdJasi4S1JDxl2SGjLuktSQcZekhoy7JDVk3CWpIeMuSQ0Z d0lqyLhLUkPGXZIaMu6S1JBxl6SGjLskNWTcJakh4y5JDRl3SWrIuEtSQ8Zdkhoy7pLUkHGXpIaM uyQ1ZNwlqSHjLkkNGXdJasi4S1JDxl2SGpoY9yRLSfYl2Z/kmhOMGST5XpKHkgznPktJ0kxSVSfe mWwDHgYuAR4Fvgvsrqq9K8acAdwNvL2qDiXZUVWPH+dYtdZrSZKeLQlVlVk/b9KZ+4XAgap6pKoO A3uAy1aNeQ/wlao6BHC8sEuSFmtS3HcCB1dsHxo/t9Iu4CVJvpHkviTvm+cEJUmz2z5h/zTXUU4B XgdcDJwG3JPk21W1f6OTkyStz6S4PwqcvWL7bEZn7ysdBB6vqqeAp5J8E7gAeFbcl5eXjz4eDAYM BoPZZyxJjQ2HQ4bD4YaPM+kN1e2M3lC9GHgM+A7PfkP194HPAW8HXgDcC1xeVT9YdSzfUJWkGa33 DdU1z9yr6kiSq4E7gW3AzVW1N8lV4/03VtW+JHcADwJPAzetDrskabHWPHOf6wt55i5JM9usX4WU JD0HGXdJasi4S1JDxl2SGjLuktSQcZekhoy7JDVk3CWpIeMuSQ0Zd0lqyLhLUkPGXZIaMu6S1JBx l6SGjLskNWTcJakh4y5JDRl3SWrIuEtSQ8Zdkhoy7pLUkHGXpIaMuyQ1ZNwlqSHjLkkNGXdJasi4 S1JDxl2SGjLuktSQcZekhoy7JDVk3CWpIeMuSQ0Zd0lqyLhLUkPGXZIamhj3JEtJ9iXZn+SaNca9 IcmRJO+a7xQlSbNaM+5JtgGfA5aA84DdSV51gnHXA3cA2YR5SpJmMOnM/ULgQFU9UlWHgT3AZccZ 91Hgy8BP5jw/SdI6TIr7TuDgiu1D4+eOSrKTUfBvGD9Vc5udJGldJsV9mlB/Bvh4VRWjSzJelpGk LbZ9wv5HgbNXbJ/N6Ox9pdcDe5IA7ADekeRwVd22+mDLy8tHHw8GAwaDwewzlqTGhsMhw+Fww8fJ 6IT7BDuT7cDDwMXAY8B3gN1VtfcE428B/qmqbj3OvlrrtSRJz5aEqpr5isiaZ+5VdSTJ1cCdwDbg 5qram+Sq8f4b1zVbSdKmWvPMfa4v5Jm7JM1svWfu3qEqSQ0Zd0lqyLhLUkPGXZIaMu6S1JBxl6SG jLskNWTcJakh4y5JDRl3SWrIuEtSQ8Zdkhoy7pLUkHGXpIaMuyQ1ZNwlqSHjLkkNGXdJasi4S1JD xl2SGjLuktSQcZekhoy7JDVk3CWpIeMuSQ0Zd0lqyLhLUkPGXZIaMu6S1JBxl6SGjLskNWTcJakh 4y5JDRl3SWrIuEtSQ8ZdkhqaKu5JlpLsS7I/yTXH2X9FkgeSPJjk7iTnz3+qkqRpparWHpBsAx4G LgEeBb4L7K6qvSvGvAn4QVU9mWQJWK6qi1Ydpya9liTp1yWhqjLr501z5n4hcKCqHqmqw8Ae4LKV A6rqnqp6crx5L3DWrBORJM3PNHHfCRxcsX1o/NyJfAi4fSOTkiRtzPYpxkx9LSXJ24APAm8+3v7l 5eWjjweDAYPBYNpDS9LzwnA4ZDgcbvg401xzv4jRNfSl8fa1wNNVdf2qcecDtwJLVXXgOMfxmrsk zWgzr7nfB+xKck6SU4HLgdtWvfhLGYX9vccLuyRpsSZelqmqI0muBu4EtgE3V9XeJFeN998IfBJ4 MXBDEoDDVXXh5k1bkrSWiZdl5vZCXpaRpJlt5mUZSdJzjHGXpIaMuyQ1ZNwlqSHjLkkNGXdJasi4 S1JDxl2SGjLuktSQcZekhoy7JDVk3CWpIeMuSQ0Zd0lqyLhLUkPGXZIaMu6S1JBxl6SGjLskNWTc Jakh4y5JDRl3SWrIuEtSQ8Zdkhoy7pLUkHGXpIaMuyQ1ZNwlqSHjLkkNGXdJasi4S1JDxl2SGjLu ktSQcZekhoy7JDU0Me5JlpLsS7I/yTUnGPPZ8f4Hkrx2/tOUJM1izbgn2QZ8DlgCzgN2J3nVqjGX AudW1S7gw8ANmzTXNobD4VZP4aThWhzjWhzjWmzcpDP3C4EDVfVIVR0G9gCXrRrzTuALAFV1L3BG kjPnPtNG/MY9xrU4xrU4xrXYuElx3wkcXLF9aPzcpDFnbXxqkqT1mhT3mvI4WefnSZI2QapO3OEk FwHLVbU03r4WeLqqrl8x5u+AYVXtGW/vA95aVT9edSyDL0nrUFWrT6An2j5h/33AriTnAI8BlwO7 V425Dbga2DP+x+Dnq8O+3slJktZnzbhX1ZEkVwN3AtuAm6tqb5KrxvtvrKrbk1ya5ADwS+DKTZ+1 JGlNa16WkSQ9N839DlVvejpm0lokuWK8Bg8muTvJ+Vsxz0WY5vtiPO4NSY4kedci57coU/58DJJ8 L8lDSYYLnuLCTPHzsSPJHUnuH6/FB7ZgmguR5PNJfpzk+2uMma2bVTW3D0aXbg4A5wCnAPcDr1o1 5lLg9vHjNwLfnuccTpaPKdfiTcBvjx8vPZ/XYsW4rwNfA/5sq+e9Rd8TZwD/Cpw13t6x1fPewrVY Bv7mmXUAngC2b/XcN2k9/hh4LfD9E+yfuZvzPnP3pqdjJq5FVd1TVU+ON++l7/0B03xfAHwU+DLw k0VOboGmWYf3AF+pqkMAVfX4gue4KNOsxY+A08ePTweeqKojC5zjwlTVt4CfrTFk5m7OO+7e9HTM NGux0oeA2zd1Rltn4lok2cnoh/uZP1/R8c2gab4ndgEvSfKNJPcled/CZrdY06zFTcCrkzwGPAD8 5YLmdjKauZuTfhVyVt70dMzUX1OStwEfBN68edPZUtOsxWeAj1dVJQnP/h7pYJp1OAV4HXAxcBpw T5JvV9X+TZ3Z4k2zFp8A7q+qQZJXAHcluaCqfrHJcztZzdTNecf9UeDsFdtnM/oXZq0xZ42f62aa tWD8JupNwFJVrfWfZc9l06zF6xndKwGj66vvSHK4qm5bzBQXYpp1OAg8XlVPAU8l+SZwAdAt7tOs xR8CnwKoqn9L8u/AKxndf/N8M3M3531Z5uhNT0lOZXTT0+ofztuA98PRO2CPe9NTAxPXIslLgVuB 91bVgS2Y46JMXIuqenlVvayqXsbouvtHmoUdpvv5+Efgj5JsS3IaozfPfrDgeS7CNGuxD7gEYHx9 +ZXADxc6y5PHzN2c65l7edPTUdOsBfBJ4MXADeMz1sNVdeFWzXmzTLkW7U3587EvyR3Ag8DTwE1V 1S7uU35PfBq4JckDjE5EP1ZVP92ySW+iJF8C3grsSHIQuI7RJbp1d9ObmCSpIf83e5LUkHGXpIaM uyQ1ZNwlqSHjLkkNGXdJasi4S1JDxl2SGvp/zy4/4DuVo0MAAAAASUVORK5CYII= )

上下标

使用 _^ 表示上下标:

$\alpha_i > \beta_i$

r'$\alpha_i > \beta_i$' 

$\sum\limits_{i=0}^\infty x_i$

r'$\sum_{i=0}^\infty x_i$' 

注:

  • 希腊字母和特殊符号可以用 '\ + 对应的名字' 来显示
  • {} 中的内容属于一个部分;要打出花括号是需要使用 \{\}

分数二项式系数stacked numbers

$\frac{3}{4}, \binom{3}{4}, \stackrel{3}{4}$

r'$\frac{3}{4}, \binom{3}{4}, \stackrel{3}{4}$' 

$\frac{5 - \frac{1}{x}}{4}$

r'$\frac{5 - \frac{1}{x}}{4}$' 

在 Tex 语言中,括号始终是默认的大小,如果要使括号大小与括号内部的大小对应,可以使用 \left\right 选项:

(\frac{5 - \frac{1}{x}}{4})

r'$(\frac{5 - \frac{1}{x}}{4})$' 

$\left(\frac{5 - \frac{1}{x}}{4}\right)$

r'$\left(\frac{5 - \frac{1}{x}}{4}\right)$'

根号

$\sqrt{2}$

r'$\sqrt{2}$' 

$\sqrt[3]{x}$

r'$\sqrt[3]{x}$'

特殊字体

默认显示的字体是斜体,不过可以使用以下方法显示不同的字体:

命令 显示
\mathrm{Roman} \mathrm{Roman}
\mathit{Italic} \mathit{Italic}
\mathtt{Typewriter} \mathtt{Typewriter}
\mathcal{CALLIGRAPHY} \mathcal{CALLIGRAPHY}
\mathbb{blackboard} \mathbb{blackboard}
\mathfrak{Fraktur} \mathfrak{Fraktur}
\mathsf{sansserif} \mathsf{sansserif}

$s(t) = \mathcal{A}\ \sin(2 \omega t)$

s(t) = \mathcal{A}\ \sin(2 \omega t) 

注:

  • Tex 语法默认忽略空格,要打出空格使用 '\ '
  • \sin 默认显示为 Roman 字体

音调

命令 结果
\acute a \acute a
\bar a \bar a
\breve a \breve a
\ddot a \ddot a
\dot a \dot a
\grave a \grave a
\hat a \hat a
\tilde a \tilde a
\4vec a \vec a
\overline{abc} \overline{abc}
\widehat{xyz} \widehat{xyz}
\widetilde{xyz} \widetilde{xyz}

特殊字符表

参见:http://matplotlib.org/users/mathtext.html#symbols

例子

In [4]:

import numpy as np
import matplotlib.pyplot as plt
t = np.arange(0.0, 2.0, 0.01)
s = np.sin(2*np.pi*t)

plt.plot(t,s)
plt.title(r'$\alpha_i > \beta_i$', fontsize=20)
plt.text(1, -0.6, r'$\sum_{i=0}^\infty x_i$', fontsize=20)
plt.text(0.6, 0.6, r'$\mathcal{A}\ \mathrm{sin}(2 \omega t)$',
         fontsize=20)
plt.xlabel('time (s)')
plt.ylabel('volts (mV)')
plt.show()

![]( AAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmczfX+wPHXe2xliREhlLQopCSSZRC5tNKG1I02WpSu 0k1106382jd129CmtBcqsg6SPSG7smeXJfuY9++Pz5lpjFnOzPme8z3L+/l4nIc553zP9/Oe45x5 fz+7qCrGGGNMMJL8DsAYY0zssKRhjDEmaJY0jDHGBM2ShjHGmKBZ0jDGGBM0SxrGGGOCZknDGGNM 0Ir6HYAxJn8ichJwK1AEKAVUBe5U1S2+BmYSjtjkPmOim4g0B5oBz6vqocBjbwDlVbWTr8GZhGPN U8Z4TETqishgEanlwblOBxqr6v9lJIyMp4CzQz2/MQVlScMYj6nqr8BHwGsi8qmInBPC6W5V1eey PiAiAlwETA3hvMYUivVpGBMGqjoBmCAijYEn3d95BqjqtGDPISJnAjNzeOpGoATwoBexGlMQ1qdh ElrgD/N9wB6gJFAWuMfrDuZAbeNhoDzwf6o6PojX9MP1YxwUkSHAIeB8XCd4fVXd4GWMxgTDmqdM whKRK4GxwGuq+i9V7QksB74XkaTAMS97UZaqzlPV64C7gBtFZIqIXJ7Py45R1YOBn7cC+4B5uNFT d3gRlzEFZUnDJCQRORsYBjykqguyPPUx0ABoLSJVgW1elquqS1W1G3AD0F5EZojIFTnEdxzwZ5bX 9VXV3qp6M/AhcJuXcRkTLEsaJlE9B2zGdVhntT7w77nAzcA7YSp/A/ALrtZwRg7PNwMm5/Lav4BK GbUhYyLJPnQm4YhIBeBiYKRm69RT1d2BH88BiqvqRo/LLikivYHZQGWgqao+n8Oh9YGfczlNXWC1 qqZ7GZsxwbCkYRLRqbh5DrPzOKYu8ETWB0SkvogsLEyBIlI20LE9HTdq8UJV/a+q7szlJadlT2iB 81QG2pClhhRKXMYUlA25NYloc+Df3dmfEJFjgXRgRJZO6AwLgfYFKShQq+kNXA68DTRU1QP5vKYs cKmIFFHVw9me7gX8ATwbSlzGFJbVNEzCUdWVwBigRdbHReQC4AVgAXCCONdled1BVV0TTBkicqKI vIgbnfU7cJ6qvp5fwghojutzeTLbOa/EdaBfpqq7ChOXMaGyeRomIQWu5l8CDuNGKQluOOtHQEPg dWAO8B5ugt3duGU73lLVvJq1EJH6uFrFC8CnOTUz5fP6/wL/xTVDXQPsxXWY7wKeVNVtgeOScEN4 6wUTlzFesKRhTD5EpCPwI+7qf6Sqfhnm8p5V1b7RFpcx4HPzlIgMEZFNIrIgj2NeFZHlIjIvcAVn TKSNAw4ArYFvw1mQiJQjh76WXEQsLmMy+N2n8S7QLrcnReQS3CiS04HbgTciFZgxGQLDcLsCXwNF RCScA0hSgJ+iMC5jAJ+ThqpOIcus1xxcAbwfOHYGUE5EKkUiNmOy6Qp8AHQPcznnE2TSCIhUXMYA /tc08lMVWJvl/jqgmk+xmMQ2H/cHfZGqpoWrEFX9j6ruK8BLIhKXMRlioTor2e5bz72JOFW90+8Y chKtcZn4Fe1JYz1QPcv9avy9NlAmEbFEYowxhaCq2S/M8xTtzVMjgH8CBDaz2aGqm3I6UFWj4jZr llKlitKnj7JnT87HHDqkPPOMUqGC8t13/sec9fbYY4/5HkM83aLp/dy7V+nYUWnQQJk3L/fjpk9X atdWunVTDh70P+5ofT/j4VYYfg+5HYbr9KslImtF5GYR6SEiPQBU9XvgdxFZAbwFRHVVfMIEaN8e 3ngDnn8eSpbM+biiRaFvXxg5Em6+GT7+OLJxmsSzeze0awclSsBPP0G9erkfe8EFMGsWbN4MHTvC /v2Ri9NEP1+bp1S1SxDH3B2JWEI1bx507gyffw4tWwb3msaNXaK56CKoUAHatg1riCZBpaXBddfB 6afD229DUhCXiiVLwjffwPXXQ/fu8NFHwb3OxD/7GHhgwwa4/HIYODD4hJGhdm2XaG64ARZGwTql LQv6C5g8RcP72bs3pKfDm28W7A9/sWLwwQewahX07x+u6AomGt7PRBcXy4iIiPr1e6Snu2r/BRfA E0/kf3xuhgyBl15yzQLHHONdfCaxffEFPPQQzJ4NZcsW7hybN8N558F770GbNp6GZ3wmImgBO8It aYTolVdg2DD48UfXV1FYqq4JoVo1lzyMCdX69e6P/YgR7qImFGPGwC23uGbY8uW9ic/4z5JGhP32 m/syTp8Op50W+vm2b3cdlJ98As2ahX4+k9guvxwaNoT//Meb8917L/z5p2uyMvHBkkYEqcJll0FK Cjz4oHfn/ewzeOopmDMntJqLSWwjR8IDD8D8+VC8uDfn3L3b9cF9/DE0b+7NOY2/CpM0rCO8kEaO dDWN++7z9rzXXgsVK8Lrr3t7XpM49u1ztYLXXvMuYQCUKQMvvAB33eVGZJnEZDWNQjh0yF1xvf56 eIbJLl7sajDLlkFysvfnN/Ht6addx/cXX3h/blU3RPz66+G227w/v4ksa56KkHfecf0O48eHr4xb b4VKlVxTlTHB2rHDzcf48UeoVSs8ZcyYAddc4y5qjj02PGWYyLCkEQH797sv5eefu8l54bJmDdSv 7+ZuVK4cvnJMfHn4Ydi4EQYPDm85HTq42vC//hXeckx4WdKIgIEDYdw4GD48/GX17u0mY734YvjL MrFv2zZ3QfPLL3DSSeEt69dfoXVrWLky9+VyTPSzpBFmhw65obWffRb6uPdgrFvnhuAuXw7HHx/+ 8kxse/xxWLsWBg2KTHkdO7rEcXdMLPRjcmJJI8w+/BDefdetFxUpt9wCJ5/s3Vh7E5/27IFTToEp U8LXl5Hd9OluvbXly92SIyb22JDbMEpPh2eegX//O7LlPvCAGzq5Z09kyzWxZdAg18cQqYQBrk/v lFPcoBCTOCxpBGn8eNe/cPHFkS33zDPhwgvdKqPG5OTwYXj1Vbj//siXff/98PLLbiiuSQyWNII0 cCD06gVSoIqcN3r1cuXbF9PkZNQotx5UJPrZsmvfHnbudE1VJjFY0gjC77+7jWu6dvWn/Nat3dXk pEn+lG+im58XNElJbob4wIGRL9v4wzrCg/DAA+7f554LWxH5+t//XAd8OGb5mti1bJlbB2r1av+W 1N+xw/VtLFoEVar4E4MpHBs9FQYHDkD16q6m4cVKtoW1e7cbe79kiZspbgy4C5qkJDdIw0+33Qan nhr5gSImNDZ6KgxGjIC6df1NGOAWi7vqKluW2vzt4EE3DPzWW/2OxMUweLD1uyUCSxr5GDzYzZWI Brfe6oZW2hfTAHz7rRtdd/rpfkcCjRq55rHJk/2OxISbJY08rF7ttl+96iq/I3EaN4YiRdxidMYM GhQ9FzQiLpZIzUY3/rE+jTw88YRb/C2a9rZ4/nnXr2FfzsS2cSOcdZbb0jVa1n7autX1a6xb55pT TfSzPg0PqcLQoXDjjX5HcqTOneHrr10HvUlcn30GV1wRPQkDoEIFN5JrxAi/IzHhZEkjF7NmuaVD /JgwlZdq1VzH/OjRfkdi/PTxx9Cli99RHK1LFxebiV+WNHIxdCjccIM/E6by06ULDBvmdxTGL7// 7m6tW/sdydGuvBKmTnVNVSY+WdLIQVoafPqpSxrR6JprXE3jr7/8jiQxHD582O8QSMuyKfcnn7i9 5KNxZdnSpaFdO5uEGs8saeQgNdUtR37qqX5HkrMKFaBpU2s7joSvvvqKDz/80O8wGDBgAD/99BPg apnR2DSV4frrrSYczyxp5OCLL9zVfDSLp7bjDRs28Nprr7Fw4cKQz5Wamkr58uV56aWXQj7XpEmT mDx5Mt26dTvi8ZkzZ3L11VdzySWXUK9ePW699Vb++OOPkMvLS79+/XjqqacYPnwxO3dCkyZhLS4k //iH29lv7Vq/IzFhoaoxf3O/hjfS0lRPOEF1xQrPThkWu3apHnec6tatfkcSmt27d2vlypVVRPT9 998P+XzDhg1TEdGePXuGdJ6dO3dqo0aNdN++fUc8PmfOHG3btq3u3LlTVVX/+usvTUlJ0RNOOEFX rVoVUpmqqitWrNAqVaromjVrjnpu9erVWrny+dqnz6GQywm3W25Rfe45v6Mw+Qn87SzQ31uraWQz ZQpUrRq9TVMZypRxbcdfful3JKF5+umnqeThYlqdO3dmxYoVvB7i5JoBAwbQtWtXjsm2CuCjjz7K G2+8wXHHHQdAqVKleOWVV9iyZQv/9mDhpZEjR/Lnn3/m+J5Ur34Sf/1Vl5Il3wu5nHCzJqr4ZUkj m1homsoQ66OoVq9ezdy5c7nuuus8PW/NmjVJSir8R3vPnj2888473JjDJJ1JkybRqlUrtmzZkvnY ueeeS9myZRk/fnyhy8wwZcoUGjduTPHixY96bsYMqFChF8OG+bw6YRBatIANG2DpUr8jMV6zpJFF ejp89VXsJI127eDnn2N3eGPv3r155plnKObRMKCDBw+ydOlSfvzxR+bNm1fo83z33XeccsopJCcn H/VczZo12bx5M3v37j3i8RIlSrBv375Cl5nhxx9/JCUlJcfnvv4aunY9l23btjF37tyQywqnIkWg Y0f45hu/IzFes6SRxbRpbmTSGWf4HUlwjjkG2rRxC9fFmi+++IKqVatSt27dHK+qc/P111/z4IMP 8vTTT9O/f3969epFr169AFi+fDn33nsvKSkpvPzyy5nH16tXj4oVK/Lkk08ybtw4Hn74YXr37k3T pk2ZnsOWc2PHjqVJLj3N06dPZ/Xq1Zx88smZj/3xxx9s3ryZRo0aZT526NAh+vTpk+fvcscdd1C3 bl0+++wz2rdvT+PGjdmyZQsTJkygffv2/O9//zvi+G++gQ4dkmjWrBk//PBDcG+Yj6680pJGXCpo J0g03vCoI7x3b9XHH/fkVBHzwQeqHTr4HUXBbNmyRRs0aJDZmTx48GAVEX3nnXfyfN2iRYv0oosu OuKxoUOHardu3Y547Pzzz9fu3btn3t+2bZuWKVNGL730Uh0yZEjm4/fcc4/WqFHjqHLOP/98ffvt t4P+fR588EEtUqSITps2LfOxF198UefNm5fn67p3764iolu2bFFV1TfffFNLlCih+/fvP+rYxYtV q1ZVTU9X7dOnj3bu3Dno+Pxy4IBquXKqGzb4HYnJDdYRXnjp6bHVn5Hh0kth/HjI1loS1Xr06MFT Tz2V2Zlcvnx5gKOafLKbP38+mzdv5q8ssxo7dOhA6dKljzgu+/3y5ctTvnx5Vq5cSffu3TMfr1On DqtXr2bbtm1HHL9q1SrKlSsX1O+S0ener18/GjduDLhmsrVr11KvXr0jjt2+ffsR9wcOHEhycnJm WRMnTqRRo0aUKFHiqHK++cZduYtAcnIyK1euDCo+PxUv7ppQR470OxLjJUsaAbNmuRFJtWv7HUnB lC8PDRrAuHF+RxKcN954g+OPP55//OMfmY+VLVsW4Kg/3tmlpKSwefNmqlWrxj//+U9ee+019u3b x8AgN6g+99xzj7if0Sy2Z8+eIx7fuXNnUEnjwIEDXH/99fTo0YP//ve/mY+PGTOGdu3aHXHs8OHD j+pYL1WqFC1btqRo0aKAm2PSokWLHMsaPtwlDYDjjz+enTt35htfNLAmqvhjSSNg+HDo0MHvKAqn Q4fY+GLOmDGD++67j9GjR1OsWLHMW9u2bQFYv359nq+vUqUKM2bMoHPnzqSmpnLPPfdQvXp1Pvnk k3zLFpEcr+BzOzY9PT3PY1SV7t27c8kll/D8888f8dy4ceO4INtKlyNGjOD8888/4rFVq1ZRp04d ABYuXMjmzZtzTBobNrjl8Fu2dPfT09MzmmWjXvv2bhj77t1+R2K8Ykkj4Ntv4fLL/Y6icK680sUf BUsk5WrTpk106tSJYcOGMXr0aObNm5d5mxzY7u3XX3/N8xyzZ89GVXnzzTdZs2YNa9asoVOnTvTo 0YNDhw55Fmu5cuWOakrK7tFHH6VOnTr0798/87GM5UZWrVp1VOf+woUL6dq16xGPPfbYY5m1j4kT J1K0aNHMDvidO3eybt06wDXvtGvnmnvANXMF23zmt7Jl4cILIQb67U2QLGkAa9a4q7ksg19iSo0a cOKJEFiaKCosXbqUq6++mgMHDrBlyxYuv/xyevXqRceOHaldu/YRtwsvvJDk5GTmzp3Lrl27cj3n woULGZZlYkq1atUYMmQISUlJ7Nixw7PYTznllDybyt59912KFCnCww8/fMTjPwa2VDx8+PARo5sG DhzIrFmzMms66enp/Oc//6Fo0aKcHtirdcqUKdSvX5+SgQ0yXnnllcxmKzdq6u9ytm/fTs2aNUP/ RSOkQwdXkzfxoajfAUSD775z1egiRfyOpPCuvNJ9MZs39zsS56effuLrr78mOTmZpKQkbr/99jyH oDZo0IBx48bRs2dP0tLSGDp06FFX66rKyy+/TPfu3alSpQoAa9eupVatWlSsWDHzuIMHDx5V88jp sYz7Bw8ePOLxZs2asWjRohzjnDBhAg888ADt27fnhizLIKelpWVOKGzQoAE33XQTV111FWvWrGHR okU0a9aMtm3b0rJlS6ZMmULx4sUza1jgEknGMN5Zs2ZRsmRJKleuzO7dbnvfrC1wixYt4uKLL871 vYw2V1wBjzwChw5F58q8poAKOtwqGm+EOOT20ktVP/kkpFP4bs4c1VNPdUMyo8Hu3bu1Xbt2mpyc rI8HMY556NChWrJkSb3ssst06dKluR4zYMAAve+++7Rfv376yCOP6N13363r1q1TVdVJkyZpw4YN VUS0RIkS2rp1ax0+fLg2aNBAk5KStHjx4tq8eXPdsGGDXnvttVq+fHlNSkrSU045RZ944onMcsaO Hat16tTJMYbk5GRNSkpSEdGkpKQjfv7Pf/6jqqrbt2/X1q1ba6lSpbR169a6bNkynTdvnp522mla oUIFvfnmm3Xbtm1HnHfevHnatGlT7dOnjz777LOZj3/+uWrbtn8fd+jQIS1Tpky+w3mjzfnnq44f 73cUJjsKMeQ24fcI37sXKld2TVQx0kycI1W3nPvo0bE3AizaHDhwgKpVqzJ//nxOPPFEX2O58UbX J3Dnne7+Tz/9xO23355v/0+0efJJt3JBYM6liRK2R3ghTJjghqzGcsIAN37/kktg1Ci/I4l9JUqU 4O677+aVV17xNY70dHcRcMklfz/20ksv5TvTPBpdeql9NuNFwieN775zH+h40K6d7R3ulb59+zJq 1Cj+/PNP32L4+We3rE2NGu7+0qVLWbNmzVH7e8SCc86BnTvdNrUmtiV00lB1Q1Uvu8zvSLzRujVM n27bwHqhZMmSDB48mNtuu823ORGjRrkBGgD79++nV69efPzxx0g0blyfj6Qku6iJFwmdNBYscGPf a9XyOxJvlCkD55/vtqs1oWvYsCE9evQIesa510aPdn9owe3vMWDAAE6N9o1e8mBJIz4kdEf4gAGw aRP43HTtqWefhdWrIcQ9iIzPtm93zVKbN7vVjOPBtm1Qs6b7nYKcnG/CLOY6wkWknYgsEZHlIvJg Ds+3FJGdIjI3cHvEy/K///7ITsZ40K6da9aIg2uBhDZunJtzEy8JA+D4493IvsAcSBOjfEsaIlIE eA1oB9QGuojIWTkcOklV6wduT3pV/s6dMG8e5LLfTcw6+2w4cACWL/c7EhOKrP0Z8STjosbELj9r Go2AFaq6SlUPAZ8AV+ZwXFh6/SZOdOPfjz02HGf3j4i1Hcc61SP7M+JJ+/b22Yx1fiaNqsDaLPfX BR7LSoEmIjJPRL4XEc+mrY0dC4HFVeNO+/Z2NRfL5s2D0qXhtNP8jsR7DRq4fsS1a/M/1kQnP9ee CqbV/WeguqruFZH2wDdAjpuxZl1ttGXLlrTMWEc6F2PGwJdfBhtqbGnTBrp3h3374q8mlQjitZYB bn23tm3d73jbbX5Hk3hSU1NJDXF4pW+jp0SkMdBfVdsF7j8EpKvqM3m8ZiXQQFW3Z3u8QKOnfv8d mjRxK9vG4JD3oDRv7haJy7LXkYkRLVtC377xN0gjw4cfupV74/WiLZbE2uip2cDpIlJDRIoDnYAR WQ8QkUoSmMkkIo1wSS7vjQ6CMHYsXHxx/CYMsH6NWLV7N8yZ8/eGS/GobVu3RXFamt+RmMLwLWmo ahpwN/ADsAj4VFUXi0gPEekROOwaYIGI/AK8DHT2ouwxY+K3PyNDmzbui2liy+TJ0LAhBLbViEuV KrnFNWfN8jsSUxgJN7kvLQ1OOAEWLoTAlgxxKS0NKlaExYvdKr4mNtx3n/t/69fP70jCq08fSE52 TajGP7HWPOWL2bOhevX4ThgARYtCixZuFV8TO8aNc2uIxbs2bdzvamJPwiWNMWNcf0YisCaq2LJx I6xb54alxrvmzd0F3J49fkdiCiohk0a892dkaN3aXc3FQQtkQpgwwXWAF02ATZhLl4bzzrMlRWJR QiWNXbvcxKlo2Uc73M480/Vt/Pab35GYYIwfnxhNUxkyLmpMbEmopDFlihuZkigT3kTsixkrVN3/ U5s2fkcSOdZ8GpsSKmlMmACtWvkdRWTZFzM2/PabqxXGy94uwWjUyP3eW7f6HYkpiIRKGhMnJl7S aN3aJcv0dL8jMXnJqGXE84TT7IoVc03FNsIvtiRM0ti+3S0X3qiR35FEVtWqbl7KL7/4HYnJS6L1 Z2SwmnDsSZikMXmyWwq9eHG/I4k8GxMf3dLT3dV2oiYN+2zGloRJGonYNJXBOsOj2y+/uNpg1ewb AySAOnXcXI2VK/2OxATLkkYCaNkSpk2Dgwf9jsTkZOJEuOgiv6Pwh4j73SdO9DsSE6yESBpbtsDq 1Ykx0zYn5crBGWfYAnHRavJkt+RLomrZEkLc4sFEUEIkjUmToGlTN1ojUbVo4d4HE13S0938oUSZ cJqTjM+mrVwQGxIiaSRy01QGu5qLTr/+ChUqxP8Cmnk54wzXdLpqld+RmGBY0kgQzZtbv0Y0SvSm KXD9GnZREzviPmls3Oi2da1f3+9I/JWcDKed5lYWNdFj8mRISfE7Cv9Z82nsiPukkZrqrrKLFPE7 Ev+1bGlfzGiiakkjg9U0YkfcJw1rmvqbfTGjy/LlUKKE2/o00dWqBfv3W79GLEiIpJGoY+Czy+jX OHTI70gMuFqf1TIc69eIHXGdNNavd2tOnX2235FEh/LloWZN69eIFtYJfiTr14gNcZ00Jk50H8Sk uP4tC8b6NaKH9WccyWoasSGu/5xaf8bR7IsZHVavhgMH4PTT/Y4kepx5Juzd694bE70saSSYlBT4 6Sfr1/BbRn9GIu2fkZ+Mfg2rCUe3uE0aa9bAX39B7dp+RxJdypeHU06BOXP8jiSxWX9Gzlq0sJpw tIvbpJHRXmxXckezqzn/WX9Gzqz5NPrFfdIwR7Mvpr82bIBt29xeEuZIZ53lWgjWrPE7EpMbSxoJ qHlzmDrV+jX8MmUKNGtmo/pyImJDb6Ndvh9bESknIu1F5A4R6Ski7USkbCSCK6zNm92aUzY/I2cV KkCNGvDzz35HkphsUl/erCYc3XJNGiLSXERGAJOBzsBJQA2gCzBFREaISLOIRFlAU6a4/TNsvanc Wb+Gf6wTPG/22YxuRfN4riPQR1WX5/SkiJwB9AR+DEdgobCmqfy1bAmDBkHfvn5Hkli2bXPt9eee 63ck0at2bdi1C9auherV/Y7GZJdX89RzuSUMAFVdpqr/CkNMIbOkkb+UFNevkZbmdySJ5ccf4cIL oWhel2sJTsR9Pq22EZ3yShpzRWSciNwiIuUiFlGIdu50q4cm6n7gwapQAapVg3nz/I4ksdgFTXBS Ulwzs4k+eSWNasDzQHNgqYgMF5HOInJsZEIrnKlToVEjKF7c70iin41SiTzrBA+OfTajV65JQ1XT VHW0qnbDdYK/C1wJrBSRjyMUX4HZlVzwUlLc+2UiY9cuWLIEGjb0O5LoV7cubNrkbia6BDVSXFUP AIuAxcBu4KxwBhUKSxrBa97cNQGkp/sdSWL46SeXMEqU8DuS6FekiJvLYk1U0SfPpCEiJ4lIXxH5 GfgWKAJcrqpRueP23r2ujb5xY78jiQ1Vq7q9wxct8juSxGAXNAVjNeHolNc8jZ9ww2lPAG5T1TNU 9TFVXRKx6ApoxgyoVw9KlvQ7kthhbceRY/0ZBWMjqKJTXjWNh4Aaqnq/qsbEmqh2JVdwdjUXGRm1 4Asv9DuS2HHeebBypdt900SPvDrCJ6lquojUFJGXRORrERkZuI2IZJDBsqRRcBlJQ9XvSOKb1YIL rlgx19Q8darfkZisgpli9A0wCBgJZHSZRt2fmIMHYeZMt3yICV6NGm6i2YoVtotcONkFTeFkXNRc frnfkZgMwYye2q+qr6rqBFVNDdyirqXx55/h1FOhXMxMQ4wOGbNvrYkqvCxpFI59NqNPMEljoIj0 F5ELReS8jFvYIysg+1IWnnWGh5fVgguvUSNYuBB27/Y7EpMhmOapOsCNQCv+bp4icD9qTJ4M3br5 HUVsSkmBAQP8jiJ+zZ4NZ5wBZaN6Q4HodMwxbkmgadOgbVu/ozEQXE3jWuAUVW2hqq0ybuEOrKCm TnWT1UzB1arlRvesXu13JPHJasGhsSaq6BJM0lgAJIc7kFCdcAJUquR3FLEpo1/DZt+GhyWN0FjS iC7BJI1kYImIjInmIbf2pQyN9WuEx+HDbvkQqwUX3oUXuoEu+/b5HYmB4Po0HsvhsagbcmtJIzQp KfDaa35HEX9++cUtQV+hgt+RxK7Spd0ChjNn2o6H0SCvZUQEIMsw29TsQ24zjimswH7jS0RkuYg8 mMsxrwaenyciua55ZUkjNHXr/r23uvGONU15w5qookdezVOpIvJAYFvXI4hIrcAf+UI3aIhIEeA1 oB1QG+giImdlO+YS4DRVPR24HXgjt/OdfHJhIzFgq4qGiyUNb1jSiB55JY22wDbgdRHZICLLAlf8 G3B/7Dch6oblAAAgAElEQVQBbUIouxGwQlVXqeoh4BPcfh1ZXQG8D6CqM4ByImLd3WHSooV9Mb2U nu6SsPVnhK5pU5g+HQ4d8jsSk2ufRmAPjSHAkECtIKNVdquqHvag7KrA2iz31wEXBHFMNVzCMh5L SYFbb/U7ivixaJFboaBqVb8jiX3JyW7FhzlzbOsDvwW1vX0gSXj9hzrYzvTs/SY5vq5///6ZP7ds 2ZKWLVsWKqhEVr8+rFrlVhUtX97vaGLf5MnWceuljJqwJY3CS01NJTU1NaRziPq0vKmINAb6q2q7 wP2HgHRVfSbLMW8Cqar6SeD+EqCFqm7Kdi716/eIN23bwt13wxVX+B1J7OvcGdq3h5tu8juS+PDl l/Duu/Dtt35HEj9EBFUt0ICmoLZ7DZPZwOkiUkNEigOdgOzzP0YA/4TMJLMje8Iw3rIOR2+oWie4 15o3dys/HPaicdwUWr5JQ0RKB/o0MkZNXSEixUItWFXTgLuBH3D7j3+qqotFpIeI9Agc8z3wu4is AN4C7gy1XJM36wz3xm+/uRFpNWr4HUn8OOEEqFwZFizwO5LElm/zVGB/8Ga4meFTgVnAQVXtGv7w gmPNU97Zv99NRNuwAcqU8Tua2DV4MEyYAB995Hck8aVHD6hdG+691+9I4kO4mqdEVfcCVwH/U9Vr gbqFCdBEv4xVRX/6ye9IYpt1goeH1YT9F1SfhohcCHQFvivI60xssn6N0Fl/Rng0b27bE4fq559D W/khmD/+vYGHgK9VdaGInApMLHyRJtrZ1Vxo1qyBPXvckvPGW9Wru2bTJUv8jiR29ekDc+cW/vXB zNOopKqZAzBV9TcR+bHwRZpod+GF7kO1bx8ce6zf0cSeKVNcLSO0ldlMblJS3IrMZ52V/7HmSAcP uk3BmjQp/DmCqWk8FORjJk6UKuUWMJwxw+9IYtOkSdafEU5WEy682bPh9NND20Uy15qGiLQHLgGq isir/D0zuwxgK8DEuYx+DZtYX3CTJ8Ndd/kdRfxKSYFHH3X9GlabKxgv+tryqmn8AcwB9gf+zbiN AP4RWrEm2llneOFs2uRudW18YdjUrOkSxsqVfkcSezKaTkMRzDyNYoFVaKOWzdPw3o4drtNx2zYo XtzvaGLHF1/A++/DyJF+RxLfunSBf/wDunXzO5LYcfgwHH88LFvmJkqCx/M0RGSBiCwAfs74Octt fkjRm6hXrhycdppbVdQEz4baRkZGZ7gJ3vz5UKXK3wmjsPIaPXV5aKc2sS6jierCC/2OJHZMmgTv vON3FPGvRQt4/nm/o4gtXu3tkmtNI7A50ipVXQXsA87GzQTfG3jMxDnr1yiY7dtdO3v9XDclNl45 6yzYtQvWrfM7ktjhVS04mAULrwNmAtcC1wEzReTa0Is20S4lxVYVLYipU91eD8VCXs7T5EfEXTXb 9sTB8XLV5WDmaTwCNFTVf6rqP4GGwKOhF22iXcWKcOKJMG+e35HEBuvPiCzr1wjesmVuou5JJ4V+ rqAWLAS2ZLm/jaN30zNxypqogmeT+iLLPpvB8/KCJpikMRr4QUS6iUh34HtglDfFm2hnX8zg7N7t 9gRv2NDvSBLHOefAH3/A5s1+RxL9Ipo0VPUB3AZI5+A6w99S1b7eFG+iXUqKaze2aTB5mzbNLSl/ zDF+R5I4ihSBpk3hR1sJL19ejZyC4DrC+wDTVfU+Vf2Xqn7tTdEmFlSrBscdB4sX+x1JdJs0yfoz /GA14fytWuUWH/Vq1eVgmqfKAGNE5EcRuVtEKnlTtIkV1uGYv9RUW6fLD/bZzF9GX5tX63QF0zzV X1XrAHcBVYDJIjLem+JNLLCrubzt2eNGmNkkyMhr0ABWrHDL3picTZrk7QVNQXbg2wxsxI2equhd CCbaZSQN69fI2bRpbkJfyZJ+R5J4iheHCy5wc2RMzryuBQfTp3GniKQC44EKwK2qWs+7EEy0q1nT VW1//93vSKKTNU35y2rCuVu9Gv76y9sNq4KpaVQHeqtqbVV9TFUXeVe8iQUi9sXMS2qqzc/wk302 c+d1fwYE16fxkKr+4l2RJhZZh2PO9u6FX36x/gw/XXABLFjg+pbMkbzuz4CC9WmYBGZXczmbNg3O PddtkWv8ceyxrk9p2jS/I4k+4Wg6taRhgnLWWW7W89q1fkcSXaxpKjrYRc3R1q51KwHXru3teS1p mKBk9GvYqqJHsk7w6GBJ42jh6M8ASxqmAKxf40h798LcudCkid+RmCZNYPZs2L/f70iiR7guaCxp mKDZ1dyRpk93i+ZZf4b/ypRxTaizZvkdSfQIV9LIa7tXY45Qrx5s2OBWFQ11n+F44FV/xpYtW+jX rx+rV6+mUqVKPPjgg9StWxeAhQsX8s4771C+fHlKly5Nz549KWmzCHPUooW7qPFqYb5Ytm6dmyXv dX8GWNIwBVCkCDRr5vo1rr7a72j8l5oKjzwS2jlUlSeffJIXXniB4447js8++4xmzZoxaNAgypYt y8SJE3nxxRdJSkri0KFDvPvuu9x+++2exB9vUlLg9dfh4Yf9jsR/Gf0ZSWFoS7KkYQoko4kq0ZPG vn3w88+h92csX76crl27ctxxxwFw3XXXUaJECbp06ULHjh356KOPMo8tVqwYlStXZv/+/Rxja7Af pVkzuOEGSEuDogn+ly2cAzSsT8MUiHWGO9Onu+a60qVDO8/evXuPam668soradSoEWPHjmXFihVH PHf48GH27dsXWqFxqnx5qFHDJfNEZ0nDRI0GDeC33+DPP/2OxF9e9WfUq1ePcePGZd5XVR599FH6 9etHp06daNu2bWbi2LVrFzNmzCA5OTn0guOUDdaA9evd97NOnfCcP8ErcaagihWDxo3dqqKXXeZ3 NP5JTYV+/UI/T1JSEm3atKF///4kJSWxdetWOnfuTJMmTWjbti316tXj2muvJTk5mQoVKvDyyy+H Xmgca9ECPvwQ7r/f70j8k7EhWDj6MwBE42C9axHRePg9YsUTT7jZ4c8+63ck/ti3DypWhI0bQ2+e Mt7auNGNGNq6NXx/NKPd7bdD3bpwzz35HysiqGqBpv8l6NtqQpHo/RrTp8PZZ1vCiEaVK7uEvmCB 35H4J9yrFFjSMAV2wQWwaJFb1yYRTZxoS4dEsxYt3B/ORLR+PWzf7moa4WJJwxTYMcdAo0aJ2+E4 fjy0bu13FCY3rVu7/6NENH48tGoV3qY5SxqmUNq0gSyDfhLGrl0wfz40bVqw15155pkkJSWF7da3 b9/w/MIx6KKLXPPpoUN+RxJ548a572Y4WdIwhZKoV3OTJ7ta1rHHFux1jz/+eObPpUqVYvHixaSn p+d5O3z4MPv372f37t2sX7+eBQsWMH78eF555RW6detGpUqVkMASpoMHD7b5GwEVK7otihNtHSpV SxomijVo4Na32bjR70giq7Bfyk6dOnHLLbcAsGfPHq677jr257Mkq4hQvHhxSpUqRZUqVahTpw6t WrWiV69eDBkyhHXr1jF8+HBSUlLYsWMHH374YWF+pbiUiBc1S5ZA8eIuYYaTJQ1TKEWKuM7gCRP8 jiSyQunPePXVVznrrLMAWLBgAb179w4pliJFinDZZZeRmprKCy+8wOuvvx7S+eJJIjafZlzQeL1/ RnaWNEyhJdoXc+NGV7tq0KBwrz/22GP59NNPM9eNevvtt/nss888ia13795cccUVTEi0LJ6L5s1h zpzE2jc8UgM0LGmYQmvd2iWNRJlXOX68q10VKVL4c9StW5cXX3wx8/7tt9/OypUrQw8OeOSRR9iw YYMn54p1pUq55J4oO02mpblhxhddFP6yLGmYQqtVC9LTIduaenFr/HhvOhl79uzJ1YFlgnft2kWn Tp045MFQnxIlStC1a9eQzxMvEqkmPHs2nHwyVKoU/rIsaZhCE0mcL6bXI1MGDRrEySefDMDs2bNt yGwYJFJneCTnDlnSMCFJlC/mihWuVnXGGd6cr2zZsgwbNoyigY0fXnnlFb799ltvTm4AaNgQfv8d tmzxO5Lwi8RQ2wy+JA0RKS8iY0VkmYiMEZFyuRy3SkTmi8hcEZkZ6ThN/lq3dstqHD7sdyThFY6R KY0bN+a///1v5v1u3bqxbt067wpIcMWKuSVF4n1swN69bk5KSkpkyvOrpvFvYKyqngGMD9zPiQIt VbW+qjaKWHQmaCee6NpR5871O5LwClf1/8EHH6R14MTbt2+nS5cupKene19QgsoYrBHPfvwR6teP 3AKafiWNK4D3Az+/D3TI49gwjzo2oWrbFsaM8TuK8ElL864TPDsRYejQoZxwwgkATJ06lUcffdT7 ghJUxmcznkf4/fADXHxx5MrzK2lUUtVNgZ83Abn1+SswTkRmi8htkQnNFFS7djBqlN9RhM/06W4b 0SpVwnP+SpUq8cEHH2QuCfL0008fsZufKbwzz3T/LlnibxzhNHo0tG8fufLCtnOfiIwFKufw1MNZ 76iqikhu1wFNVXWDiFQExorIElXNceR1//79M39u2bIlLW3t6ohp0QKuvRZ27IByOfZOxbZIfCnb tm3L/fffz3PPPYeqcuONN7Jw4ULKly8f3oLjnIj7vxs1CgKT8ePKmjWuoz/YCaepqamkhrhuvC87 94nIElxfxUYRqQJMVNUz83nNY8BfqvpCDs/Zzn0+a98ebrkFrrnG70i816ABvPRS+Dsa09LSaNas GTNnzqRJkyZMmDCB4sWLh7fQBPDNN/C//8VnE+rbb7tFNIcOLdzrC7Nzn197hI8AbgKeCfz7TfYD RKQkUERVd4tIKaAt8Hj240x0aNfOXZHHW9LYtAl++w0uvDD8ZRUtWpQWLVrw559/MmLEiEInjDlz 5vDhhx9SpEgRVq1axaBBg3jrrbfYsWMH69ev5/HHH6dmuFe1iyIXXQQ33uiWFClVyu9ovDVqFATm iUaOqkb8BpQHxgHLgDFAucDjJwLfBX6uCfwSuP0KPJTH+dT4a+lS1apVVdPT/Y7EW++/r3rVVZEp a+jQoVqxYkVdsWJFoc/x22+/6V133ZV5/6abbtIzzjhDp02bplOnTtWkpCR98cUXvQg3prRsqfrt t35H4a0DB1TLllXdvLnw5wj87SzQ329fahqquh04aiyKqv4BXBr4+Xfg3AiHZgrp9NPdssy//ur2 z44Xo0e7WlS4TZ48mbvuuotRo0Zx6qmnFvo8L7zwAs8++2zm/T179lC+fHkaN27MunXr6NOnD926 dfMg4tiSURO+9FK/I/HOtGnue1exYmTLtRnhxhNZOxzjxeHDrh083Elj2bJlXHPNNQwaNIgLQ2wH e+CBByiVpQ1m2rRptAmMFa5WrRrPPvssycnJIZURi+Ltswnu94nkqKkMljSMZzKu5uLF7NlQuTJU rx6+MrZu3coll1xC3759ucaDDqEaNWpk/rx06VL++OMPWrVqFfJ5Y93ZZ8O+ffG1uGakasHZWdIw nmnVyi1nsHu335F4I9xDbQ8cOECHDh34xz/+wf333+/5+TNGXzVp0iTzsd9///2o4+bOnUudOnU8 Lz+aiMTXfKI//oC1a93Ww5FmScN4pnRpuOCC+FnrZ9So8F3JqSrdunUjOTmZ1157zZNz7ty5k1NO OYWFCxcCMHbsWM4555zMTZ/S09N57rnnjnpdnTp1GBUvf03zEE814R9+cCsUFPWhV9qShvFUvLQd b90KixZBs2bhOf/DDz/M8uXL+fTTTzNngofqzTffZPXq1fz6668sWbKEFStWUKJEicznn3rqqRw7 wYsXL85JJ53kSQzR7OKL3aZM+/b5HUnownlBkx9LGsZTl10GI0e6ZcRj2XffuSu5LH9zPTNkyBA+ +ugjvvvuO0qWLOnJOYcOHcojjzxC9+7dmTNnDu+99x7Tp0+nZs2a9OzZk3vuuYcmTZpwwQUXZL4m PT2dgQMHcttttzF79mxP4ohm5crBeefF/lL+Bw7A2LFwySU+BVDQMbrReMPmaUSVWrVUZ870O4rQ dOyo+t573p933LhxWrFiRV24cGHI50pPT9dJkyZphw4dVES0V69eBXr9V199pZs3b9abbrpJv/ji i5DjiQUvvqh6661+RxGa0aNVmzTx5lwUYp6GL8uIeM2WEYku//6320f7qaf8jqRw9u1zo6Z+/x2O P9678y5atIiWLVvyySefcFEQmzmrKocOHeLQoUPs3buX7du3s23bNhYtWsTcuXMZPXp05v7iIsKs WbM477zzgo5n9+7dqCp16tQ5qikrXv3+u5vd/8cfoe317qc77oCaNeGBB0I/VywtI2Li2JVXwm23 xW7SGDfO7U/gZcLYtGkTl156KVu3bs2cN+GlunXrFihhAJQpU4Y33niDjh07cvjwYdLS0jJ3EoxX NWu6/V9mzIAsg8piRno6jBjhNj7zS3x/QowvLrjAdSSvWAGnneZ3NAU3fLhLfF564oknOPbYYznz zDzX5Sy0u+66q1Cv++ijj3j55Zd599136dGjh8dRRacrr3T/x7GYNObMgeOO827b4cKw5ikTFrff DrVqQZ8+fkdSMIcPu90Ip01zV6Xx7s4776RevXrUqlUrYSYBzpkD118PS5f6HUnBPfywq2383/95 c77CNE9Z0jBh8d138MwzbtnmWDJ1qmsznj/f70hMuKjCSSe5EUhhqviFTd26MGgQNG7szfkKkzRs yK0Ji9atYd48t0FMLPnmG++bpkx0EYErrnD/17FkxQrYts2fWeBZWdIwYXHMMW4y1bff+h1J8FRd W3eHvHasN3GhQwf3fx1Lhg93yS7J57/aljRM2GR0OMaKJUvccNsCDkIKmldrPM2ePZt7772XDz/8 kJ49e/Lbb795EF1iadHC/X9v2OB3JMELxwCNwrA+DRM227dDjRpuTHzp0n5Hk78BA2D9enj99fCc /+DBg2zcuDGkJTsOHDhArVq1mDFjBpUqVWL27NnceeedzJw508NIE8P117stfHv29DuS/G3a5AaW bNzoavFesT4NE1XKl4emTd248lgwbBh06hS+83uxxtPkyZMpXbo0lSpVAqBBgwYsXryYVatWeRBh YrnuOvjkE7+jCM7nn7slerxMGIVl8zRMWF1/vftjfP31fkeSt19/hR07wrNAYXp6Oq+//jrz58+n R48enH/++ZnP/fnnnzz33HPkVVMuWrQojz32GEWLFmXVqlUcn2XWoYiQnJzMwoULj9hLw+SvfXu4 +WZYtw6qVfM7mrwNG+aG20YDSxomrDp0gLvvdqM+vJxh7bVhw6Bz5/B0Mg4fPpzOnTszZ84cVq9e fUTSSE5OZsCAAUGfa+vWrUctcnjMMcewO142MYmgEiWgY0f49NPonk+0ahUsW+YGlkQDa54yYVWm DLRtC19+6XckuVN1SaNLl/Ccv02bNpQoUYLx48dz2WWXhXSucuXKHVUr+euvv6hQoUJI501UXbq4 //to9skncPXVUKyY35E4VtMwYXf99fDqq26WeDSaMQOKF3frTYVDXms8bd++neeffz7P5qkiRYrQ v39/ihYtyplnnslbb72V+VxaWhrbt2/n5JNPDk/wca5VK9c8tWyZv0tz5GXYMBg40O8o/majp0zY 7d/vluZYsACqVvU7mqPde6/rtH/ssfCV0axZM15++WVmzJhBjx49Cr0wYFpaGieffDLTp0+nevXq jB8/nr59+zJnzhyPI04c99zjmk7D+f9fWAsXus2WVq8OT9OpjZ4yUemYY9z48s8+8zuSox0+7OIK V9NUhnr16jF79mxq164d0kqyRYsW5cMPP+Spp57igw8+YOjQoXz66aceRpp4MgZrRON1Z8aIPr8n 9GVlNQ0TEWPHQr9+MGuW35Ecadw4t/9HAmxcZ3KhCqee6vrdwtVEWRiqbpXozz8P34RTq2mYqNWq FaxdC8uX+x3JkcLZAW5ig4gbOffxx35HcqSZM6Fo0ehKZGBJw0RI0aLui/nBB35H8rc9e+Drr11c JrF17QoffQRpaX5H8rcPPnBxSYHqAeFnScNEzM03w3vvuX6EaPDFF24jnmjsnDeRVacOnHwyjBrl dyTOvn1uqG337n5HcjRLGiZi6tWDKlVgzBi/I3EGD4ZbbvE7ChMtbrnFfSaiwZdfuiXQq1f3O5Kj WdIwEXXrrW4TGb8tXerG5oc4187EkU6dIDU1Ola+HTTIfVeikSUNE1GdO8OECf5/Md95B266KXpm 2Rr/lSkD11wDQ4b4G8fSpbB4MVx+ub9x5MaG3JqIu+MOqFQJ+vf3p/w9e1z79axZcMop/sRgotPc uW6jo5Ur3eANP/TqBWXLwpNPhr8sG3JrYsJdd8Fbb8HBg/6U/9FHrgPcEobJrn59d0Hh1+Zhu3a5 z2c07/FhScNEXN26cNZZ/ixiqAqvveau5ozJSa9e7jPihw8+gNato3updksaxhf33AMvvRT5pRsm ToRDh6BNm8iWa2LHVVe5Sai//BLZcg8fdgt7RvsFjSUN44srrnBV8dTUyJb79NPQt2/0TZgy0aNY MejdG555JrLlfv21WzixefPIlltQ1hFufDNkiNsA54cfIlPenDluU6jffnNLoRuTm127oGZNt2z+ qaeGvzxVaNgQHn3ULe4ZKdYRbmJK165u6edIrer9zDPwr39ZwjD5O+441xn97LORKW/8eNi7N3qH 2WZlNQ3jq4EDXU3j22/DW868eW5fguXLoXTp8JZl4sOWLXDmmW4F5HCOtFOFpk3dqMKuXcNXTk6s pmFizu23u82Zpk4NbzkPPwwPPWQJwwSvYkW3v3245xN9+y3s3h07C2daTcP47t133W3SpPB0UE+d 6jbaWbYMSpTw/vwmfu3cCaef7kbd1anj/fnT0+Hcc91Eviuu8P78+bGaholJN94If/4JX33l/bnT 0+G+++CJJyxhmIIrW9bVUP/1r/AMDx882C1fEgt9GRksaRjfFS3qJlP9619uiQ8vDR7sOr5vuMHb 85rEcffdsH69GxLrpW3b4JFH4PXXY2sIuDVPmajRtatbCvrpp70539atrklhzBg45xxvzmkS06RJ 8M9/utF+XvWL3X47HHOMm9Dnl8I0T1nSMFFj40bXvvvVV25tqFCoupm9p50Gzz3nTXwmsWUsVe7F 0v7ff+8W7pw/3zWB+cX6NExMq1zZLWR4441uNEkohgyBVasis1KoSQwvv+xWMAi1mWrzZpeAPvjA 34RRWFbTMFGnZ0/YtMltx1qkSMFfP3s2tG/vvuDhGPFiEtf06W6U06RJbtHNgjp40M0XatwYBgzw Pr6CipmahohcKyILReSwiJyXx3HtRGSJiCwXkQcjGaPxz6uvwo4dbo2oglqzxi3DMGiQJQzjvcaN 3SzxSy91NYaCUIUePdxoqSeeCE98keBX89QCoCMwObcDRKQI8BrQDqgNdBGRQuR2UxCpkV5BMAfF i7tl00ePhgcfDH6o4/Ll0LKle00k1+/JSzS8n/EkGt7Pbt1cp3irVrBuXXCvOXzYJYxFi+DjjwtX g44WviQNVV2iqsvyOawRsEJVV6nqIeATIEr+FMSvaPhSApQvD5Mnu2aAG25wNY+8jBsHLVq4MfX3 3BOZGIMRLe9nvIiW97N/f5c8mjaFn37K+9gtW6BjR7cb4LhxUKpUJCIMn2juCK8KrM1yf13gMZMg jj/eLeR23HFu46Z33oG//jrymHnz3Jf35pvhvffgttv8iNQkogcecJ3jV18Nd94JS5Yc+fyOHW5t tbPPhjPOcMuFlCnjT6xeCtsuuCIyFqicw1P9VHVkEKewnm1DqVLwxhtuGZAXXoD773dLVZct60ZH paXBLbfAr7+65GJMJHXsCCkpblh3q1bu83rSSW7i3qpVrtN75Ei37Hm88HX0lIhMBPqo6s85PNcY 6K+q7QL3HwLSVfWorVFExBKMMcYUQkFHT4WtplEAuQU8GzhdRGoAfwCdgC45HVjQX9oYY0zh+DXk tqOIrAUaA9+JyKjA4yeKyHcAqpoG3A38ACwCPlXVxX7Ea4wxxomLyX3GGGMiI5pHTx0hmIl+IvJq 4Pl5IlI/0jHGkvzeTxFpKSI7RWRu4PaIH3HGAhEZIiKbRGRBHsfYZzNI+b2f9tkMnohUF5GJgcnU v4pIjgPSC/T5VNWovwFFgBVADaAY8AtwVrZjLgG+D/x8ATDd77ij9Rbk+9kSGOF3rLFwA5oD9YEF uTxvn01v30/7bAb/XlYGzg38XBpYGurfzlipaQQz0e8K4H0AVZ0BlBORSpENM2YEO3HSBhgEQVWn AH/mcYh9NgsgiPcT7LMZFFXdqKq/BH7+C1gMnJjtsAJ9PmMlaQQz0S+nY6qFOa5YFcz7qUCTQHX1 exGpHbHo4o99Nr1ln81CCIxErQ/MyPZUgT6f0TDkNhjB9tZnv/qwXv6cBfO+/AxUV9W9ItIe+AY4 I7xhxTX7bHrHPpsFJCKlgS+AewM1jqMOyXY/189nrNQ01gPVs9yvjsuGeR1TLfCYOVq+76eq7lbV vYGfRwHFRKR85EKMK/bZ9JB9NgtGRIoBXwJDVfWbHA4p0OczVpJG5kQ/ESmOm+g3ItsxI4B/QuZs 8h2quimyYcaMfN9PEakk4nYuFpFGuOHZ2yMfalywz6aH7LMZvMD7NBhYpKov53JYgT6fMdE8papp IpIx0a8IMFhVF4tIj8Dzb6nq9yJyiYisAPYA3X0MOaoF834C1wB3iEgasBfo7FvAUU5EhgEtgAqB SauP4Ual2WezEPJ7P7HPZkE0BW4A5ovI3MBj/YCToHCfT5vcZ4wxJmix0jxljDEmCljSMMYYEzRL GsYYY4JmScMYY0zQLGkYY4wJmiUNY4wxQbOkYUw2IlJWRO7Icv9EEfk8TGVdJiL983i+nogMDkfZ xhSGzdMwJpvAwm4jVfXsCJQ1Eeic1wxcEUkFrlPVzeGOx5j8WE3DmKM9DZwa2ODnGRE5OWNDIBHp JrtkU18AAAHJSURBVCLfiMgYEVkpIneLyP0i8rOITBOR5MBxp4rIKBGZLSKTRaRW9kJEpDpQPCNh iMi1IrJARH4RkUlZDh0FXBv+X9uY/FnSMOZoDwK/qWp9VX2Qo1cArQN0BBoCTwG7VPU8YBqBNXyA t4Feqno+8ADwvxzKaYpbsTXDo0BbVT0XuDzL4zOBlNB+JWO8ERNrTxkTYflt8DNRVfcAe0RkBzAy 8PgCoJ6IlAKaAJ8H1tUDKJ7DeU4CNmS5PxV4X0Q+A77K8vgG3C6LxvjOkoYxBXcgy8/pWe6n475T ScCfqhrMXuCZWUVV7wis2nopMEdEGgRWbxVs/w0TJax5ypij7QbKFOJ1Am6/B2CliFwDbnlqEamX w/GrcXs4EzjuVFWdqaqPAVv4e/e0KoFjjfGdJQ1jslHVbcDUQKf0M7ir/Iwr/aw/k8PPGfe7AreI yC/Ar7h9mLObCpyX5f6zIjI/0Ok+VVXnBx5vBEwO5Xcyxis25NYYH4nIBKCrqm7I45hUbMitiRJW 0zDGX88DPXN7MtCstcIShokWVtMwxhgTNKtpGGOMCZolDWOMMUGzpGGMMSZoljSMMcYEzZKGMcaY oFnSMMYYE7T/Bxi7FV50SWh9AAAAAElFTkSuQmCC )