Files
ailearning/docs/da/122.md
2020-10-19 21:08:55 +08:00

23 KiB
Raw Blame History

Theano 实例:线性回归

基本模型

在用 theano 进行线性回归之前,先回顾一下 theano 的运行模式。

theano 是一个符号计算的数学库,一个基本的 theano 结构大致如下:

  • 定义符号变量
  • 编译用符号变量定义的函数,使它能够用这些符号进行数值计算。
  • 将函数应用到数据上去

In [1]:

%matplotlib inline
from matplotlib import pyplot as plt
import numpy as np
import theano
from theano import tensor as T

Using gpu device 0: GeForce GTX 850M

简单的例子:y = a \times b, a, b \in \mathbb{R}

定义 $a, b, y$

In [2]:

a = T.scalar()
b = T.scalar()

y = a * b

编译函数:

In [3]:

multiply = theano.function(inputs=[a, b], outputs=y)

将函数运用到数据上:

In [4]:

print multiply(3, 2) # 6
print multiply(4, 5) # 20

6.0
20.0

线性回归

回到线性回归的模型,假设我们有这样的一组数据:

In [5]:

train_X = np.linspace(-1, 1, 101)
train_Y = 2 * train_X + 1 + np.random.randn(train_X.size) * 0.33

分布如图:

In [6]:

plt.scatter(train_X, train_Y)
plt.show()

![]( AAALEgAACxIB0t1+/AAAGGBJREFUeJzt3X2MXFd5x/HfM3G2bElLtFnqAIlIGtEGSGRtnFK3ocpU 7e4GWrnYFgLSFLdIGNS0gmgDxqQ0GxHVpGCB0jea0MSLVMMfpaGbAjtZXsawLaUlcYILCRA1WAlg k2XLm2LkpPv0j5ndnZ2dmb1vM/fOme9Husq83Llzrq/zzPFzn3OOubsAAP2vlHcDAADZIKADQCAI 6AAQCAI6AASCgA4AgSCgA0AgMgnoZnaWmR0zs3uzOB4AIL6seuhvkfQ1SRS1A0BOUgd0M7tA0isl fUiSpW4RACCRLHro75f0NknLGRwLAJBQqoBuZr8r6Xvufkz0zgEgV5ZmLhcz+wtJfyDpGUnPkvTz kj7m7q9v2Ie8OgAk4O6xOsqpeuju/k53v9DdL5b0WkmfbQzmDfsFu9188825t4Hz49w4v/C2JLKu Q6c3DgA52ZLVgdz9qKSjWR0PABAPI0VTKpfLeTehq0I+v5DPTeL8BlGqm6KRvsDMu/0dABAaM5P3 8qYoAKA4COgAEAgCOgAEgoAOAIEgoANAIAjoABAIAjoABIKADgCBIKADQCAI6AAQCAI6AASCgA4A gSCgA0AgCOgA+kqlUtHExB5NTOxRpVLJuzmFwvS5APpGpVLRrl17dfr0bZKk4eH9uueeGU1OTubc suwlmT6XgA6gb0xM7NH8/E5Je+uvzGh8fFb33fexPJvVFcyHDgADjB46gMKqVCo6dOgOSdLU1D5J IuXS6TMEdABF1C5fLmldkA8xmEsEdAABGaR8eSvk0AFggG3JuwEA0MrU1D4tLOzV6dO158PD+zU1 NZNvowqOlAuAwmq+KRpqvrwVcugAEAhy6AAKL+nQfYb8b44eOoCeSTp0f5CG/K/oecrFzJ4l6aik n5E0JOlf3P1A0z4EdACSkpciDmIJY5KAnqrKxd1/ama/6e5PmdkWSQtm9nJ3X0hzXABAfKlz6O7+ VP3hkKSzJC2lPSaAME1N7dPw8H5JM5Jm6qWI+1bfb5cn3+xzqEmdQzezkqQHJF0i6e/c/e1N75Ny AbCqXSniZnnyQSthzLVs0cyeI6ki6R3uXm14nYAOYFPr8+QVSdMaGXlSR478TfDBu5We59AbufsP zewTkq6UVG18b3p6evVxuVxWuVzO6msBBKeiWlC/TUtLtdkVQ69okaRqtapqtZrqGGmrXEYlPePu PzCzYdWuxC3u/pmGfeihA9jUWsrlYklv1iBVtLSSx8Ci50n6rJk9KOlLku5tDOYAENXk5KTuuWdG IyNP5t2UvsXAIgCFMoiDiFphLhcAQRi0ipZWCOgA+hIBfCMCOoC+Q4qlNQI6gL4ziPO0RMH0uQAw wAjoQB8JcU5w5mnJDikXoE+EnGvmpuhG5NCBgJFrHizk0AFggGU2OReA7pqa2qeFhb06fbr2vJZr nsm3USgUUi5AHyHXPDjIoQNAIMihA8AAI6ADyE2IdfV5IuUCIBch19VngRw6gL5BXX1n5NAB9FSc lAnple6jDh1AIs0pk4WFvbrppj/V0aMPSFpfVtlu34WF/dTVZ4iUC4BENqZMblSpdJeWl98vaX1O vF16ZWpqH3X1bSRJudBDBzIUwsCf5Ofwb/VgXgvap09Lhw7d0fHzk5OTfflnVFQEdCAjrdIK/Va1 EeccmqciKJW+qeXl1sdl2oIecfeubrWvAMI3Pr7bpcMueX077OPju/NuVixxz2Fubs7Hx3f7+Phu v/XWW314eGv984d9eHirz83Ntdy38XW0Vo+dseItPXQAbVQkfVBf/OIJXXFFWaOj521IwTSnTK68 8sqGdE2tZx9CGqpvxP0FiLuJHjoGxNzcXMceaj9YO4cpl0Yb/rv+nKL2tkP4M8mLEvTQCehAhkJI K8zNzfnIyCX1ILwxBTM2dlXkIB1CGiovSQI6KRcgQyFUbUxOTmr79m2an2/9/okTJ+s3TaNXs6A3 COjAAFjJYy8unpK0pWU+vNFaVcp1km6sv3pcpdJhPf30syN/L9UtvcXAIiAQ7W4+rpUiXidpRtL7 JG0+GVbjj8CPfvQjPfbYE/U68+OS7pR0e6zjNLcLnSUZWEQOHQhAp5uPa3nsxnz2nEs7fGTkkki5 /o258CkfGbmkr+8VFJ16nUM3swslfVjSL0hySXe4++1pjgkgvkOH7oiR167U97tNS0vSrl1JBkBd ru3bH2NmxIJJO9vi05JucPeXStoh6Xoze3H6ZgHIytTUPg0P75d0sWr58GlJK8G/Nip0JSWy+TFm JM3Uc+H7Vt9nJsViSNVDd/eTkk7WH//EzB6W9HxJD2fQNgARVCoVLS6eUql0w+rQ+8abj5OTk7rn npl6PvyX9eijj+vHP473HY3HkNYGDa18f79PeRCMuDmadpukiySdkHRO0+vdTDMBA2197nzKS6Xz fGzs6p4O9qHWvDuUVx26mZ0j6Z8kvcXdf9L8/vT09OrjcrmscrmcxdcCA685d768fLlGR2c3neGw XW8b+alWq6pWq6mOkbps0czOlvSvkj7l7h9o8b6n/Q4ArWW1jFua0kLWBu2Onq8pamam2l2S77v7 DW32IaADXZJFMM3qGNSaZyuPgP5ySZ+X9BXVyhYl6YC7zzXsQ0AHuihtMGWx5mLq+YpF7r4gFprG gMuqd5r0OM3zx9BbHmBx76LG3USVCwKWVcVIu+OszN44NnaVj41dvToys92sjknawxS3xSSmz0XI ijg1bVYle62OszZN7fo5yYeGzvWhoeduMsw/XnuK+Gc76JIEdGZbRF8IafBK1JTI2jS1s6pNqFXL cZ8580FJb1YW09eSnglM3F+AuJvooSMDRR28Ejdd0Sm10vz62NjVbRaZ2NH2zyJOe0i1FJtIuSBU RQ3o7vHSFZ3Oo/k4G5eD2zzlEqc9Rf4zBSkXBKwICyW0S09ktUpRq+M0zsEi3V1fmOKjktR2pGdR Vk0inZODuL8AcTfRQ0dG8rxx1+1qljx0sy1FOs9+pQQ9dFYsAiJIO/imsbd69dVX6OjRByTl33Pt Vi+awUrp9XxgEYDOKpWKDhx4tx566Gv15dukhYX1Q+vzTE0UJT2DjMTt0sfdRMoFAUg3YCebqpR+ Eup59ZK4KQp0R9wpZyuViq699vqGOvLW4i0d1z+YojcfBHQgoqjpibVBUBfXX9mntVxyPhU6eSCd 03tMrAVkbK3XPS1pv2qrNF6nUmlKY2N3r+bPG5eOa7dWZxqs8zl46KEDXTOpWqCe1sjIkzpy5B/b rMN5XKXSlLZtu0wHD9Z67hMTeyQlv0ka0lQJiCFu0j3uJm6KIlBpZjxsN0ozq5uJjALtf0pwU5SU C9BBu7TFSg94fn6n5ud3ateuvavvr9wQHB+f1fj4bKye8fqbpLUe9sqNRWBTcX8B4m6ih44+1am3 nLYH3O7YWfWsKRvsf6JsEUim1eCebpYUdirry2LOGsoGB1TcX4C4m+iho+CS9Ja7PQ8Ki01AzOUC xNdu3pGpqX3rKkWGh4szZB/hYy4XIEObpS0YOIOioYeO4G3Wk26u2W7uiQN5SNJDJ6AjaFGDdXPQ l0Q6BbkioANNkszLTY8dRUAOHchAqDMgInwEdAQt7lqklUpF99//kKSdvWkgkCGG/qNw4swSuNm+ cYbhr6RalpZeJelGdWMGRKCr4haux93EwCLEEGfATtzBPZsN2Fk/kGjOpR0+MnIJg3uQC+Ux9N/M 7pL0O5K+5+6Xpz0eBkO7UsI4+es4+7abTnblOJK0uPj9hk9MSjqp7dtnyZ2jb2SRQ79b0l9J+nAG x8IAyGOu7lbB/8CBd+uRRx5dbcfQ0Fs1NPQ2nTlT+8ygrCyEcKQO6O7+BTO7KH1TMCg69azj3MSM e8Oz2YkTJ9e148wZaWzsTo2OztaP3/pHhiH/KCqqXFAocWYJbLWv1Hq1n1bB/4UvvFRLS+uPOTq6 NVaNOisBoUgyGVhU76Hf2yqHbmZ+8803rz4vl8sql8upvxP9K+7Anag94s2O22o0aNwBREkGKgFR VKtVVavV1ee33HJL7IFFWVWyXCTpeJv3uncbGH0r6hSxUStZ5ubmfGTkktiLQ8Sdqpal3dArSlDl QkBHoUUJoGtBf0fXgy0rAaFXkgT0LMoWPyLpaknnmdnjkv7c3e9Oe1wgqrWbrOdrLRXSnSoVVgJC kWVR5fK6LBoCtBKvkmVStdGd0xoZeVJHjnSnSoV50FFUzLaIwks6n7m0cQpcZlJEv2D6XAysqBUs hw7dQZUK+gLT56IQOvWou7WQRHMaZGJiT8vBS0DICOjIVKeBN83vHT36Wkln68yZ927Yt1vSji4F Ci1uWUzcTZQtDpROZYYb3+temWGn8sK4tedAHpRH2SJQRJ3KC6lSQagI6MhMpVLR4uIplUo3aHm5 9lpjSqM53TE09Iik7s1uSODGoKHKBZlYnx8/rlLpsLZtu0wHDx7oyU1RIDSULSIXlUpF1157vZaW 3qUsywGZphaDjLJF9Nxaz/ziLh2XaWqBqAjoSCXLeVQae+SLi9/vuLwcvXdgIwI6MhJtHpV2mnvk pdJU5H3pvQM1BHSksnGgzmOxg7m0cVm65eXjbatl4iwODQwSAjpS6d50spdr27aXbLq+J4A1VLmg EOLMgsiMiRgElC2ir8W50clNUYSOgA4AgUgS0EvdagwAoLcI6AAQCAI6AASCgA4AgSCgA0AgCOgA EAgCeuAqlYomJvZoYmKPKpVK3s0B0EUE9ICtjKicn9+p+fmd2rVrb2ZBPcoPBT8mQI/FXYQ07iYW ic5NpwWb0+i0AHOcfQC0JxaJRi9Eme2QGRGB3iOgB2zj1LbZLsIMoFhSB3Qzu0bSBySdJelD7n5b 6lYhE92a2jbKDwU/JkDvpZqcy8zOkvR1Sb8t6duS/kvS69z94YZ9PM13IJ5ezUIY5XuYERFIruez LZrZr0m62d2vqT9/hyS5+3sa9iGg90jUecIJtEDx5THb4gskPd7w/In6a+iCzcoA19+IrAX2lcDd eIxulTICyFfaHHqkrvf09PTq43K5rHK5nPJrB09WCyPHrT6hNw/0RrVaVbVaTXWMtCmXHZKmG1Iu ByQtN94YJeWSjYmJPZqf36mVQCzNaHx8Vvfd97HVfaKkXFodZ2zsTo2ObtXi4ilJWzQ6ep6mpvZJ Eku9ATlJknJJ20P/sqQXmdlFkr4j6TWSXpfymEgoSlVLc/XJ0NBb9dWvnq0zZ3ZI+ryk90mq/Qvg 0ksvpZYc6COpArq7P2NmfyKpolrZ4j80VrggO1HLACcnJzsG3Oagv7i4TceO/ZGkWdWC+VrwPnHi 3RmfBYBuYk3RPtKNfPZaCmZWUmMq5kadc84RPfXUT7W8/H5JpFyAXmKRaKyKGvzX8u7XSZpRrZd+ XNKdkm6XdFyl0mFt23aZDh48QDAHeoSADknR69Eb9z906I7Vm6InTjyhpaV3qdWNU4lqF6AXCOiQ FK0iJt7nb1SpdBepF6CH8qhyQYCab8CWSofrwZxqF6DICOgBSjsx1sZKmMt07Fg3WgogS6RcApVl RUzcnDyA9MihB6RoQ+6bb5yujCbNu11AqAjogShqj7io7QJCREAPRNoqlW4paruAEOUxfS4KYLNp dQEMiLirSsfdal+Bdubm5nx8fLePj+/2ubm51deGh7e6dNilwz48vHX1vVafj7pvFm3t1XcBg64e O+PF27gfiP0FBPS2OgXIVoG+lfHx3fXPe3077OPju7va5ijtApBOkoBOHXqOOi02sdmsiXkparsA MLCor1UqFS0unlKpdIOWl2uvxR1EBCAc3BTN0dTUPg0P71dtlsOZejDeF+mzKyWEx469UcvLb1Cp NKWxsbtjlRFyMxUIC2WLOUs6gChtCSE15UCxMTlXH8orJx13sei0ijbyFQgRAb1PxZ2Aqzmg9lLz vwYWFvbyrwGgG+KWxcTdRNli10QtIWxVHnnrrbf2rKa816WVQAhE2WLvdTuV0On4UdM1rdIrR4/O rpsid2qKHjPQ7wjoKXQ7ldDt4/cqf592fnYAEcXt0sfdFHDKJW4qIe4oy6xSFUUYss8IUyAekXLp nUqlovvvf0jSzsj7r/W2j+szn/l9bdt2mQ4ePBC7lxw3zdO8AlEe6RVGmAI9EPcXIO6mAHvoaz3e KZdGI/V813rbcy5t7C1HnaSrlzczAeRHTM7VG+tTIXMu7fCRkUsiTqK1MY0yNnZV5Em6qBgBBkOS gE7KJbVJSSe1fftsx5TC2o3Bize8d+LEyciTdK2kTQCgGXO5JJBkDpaVPPbY2FkqlW5Y99kXvvCC rn43gMHAXC4Jxbkx2WqUZvPzOPOqMIweCF9P1xQ1s1dLmpZ0qaRfcfcH2uwXZECPKuokWARpAI16 HdAvlbQs6e8lTRHQW2NhZQBJ9HS2RXd/ZOVLAQD546Zol8W9icmiEwCS6phyMbN5See3eOud7n5v fZ/PiZRLR1Hz4yw6AWBF5ikXdx9P16Sa6enp1cflclnlcjmLw/aNNLMidnPRCQDFUa1WVa1WUx0j q4FFHX9FGgN66KhWAZBEc2f3lltuiX2MxAHdzHZJul3SqKRPmNkxd39F0uOFIO10t0wzCyANBhZl pFKp6Nprr9fS0ruUpkSRHj4Aqcd16JG/YAAC+lrP/GJJb9ZaQL9RIyMf1/bt2wjOAGIhoOdkbfDQ +aoF89qc59KdqmWlqFgBEE9PBxahlUnV6s2ntWXL/+iZZ24XFSsAeoWBRRlYP3jopIaHH9Pll784 72YBGDD00DPQaok3aWUGxdo+VKwA6DZy6F1ExQqApLgpCgCBSBLQyaEDQCAI6AAQCAI6AASCgA4A gSCgA0AgCOgAEAgCOgAEgoAOAIEgoANAIAjoABAIAjoABIKADgCBIKADQCAI6AAQCAI6AASCgA4A gSCgA0AgCOgAEAgCOgAEgoAOAIEgoANAIBIHdDN7r5k9bGYPmdk/m9lzsmwYACCeND30+yS91N23 SfqGpAPZNKm/VKvVvJvQVSGfX8jnJnF+gyhxQHf3eXdfrj/9kqQLsmlSfwn9L1XI5xfyuUmc3yDK Kof+BkmfzOhYAIAEtnR608zmJZ3f4q13uvu99X1uknTG3Y90oX0AgIjM3ZN/2OwPJb1R0m+5+0/b 7JP8CwBggLm7xdm/Yw+9EzO7RtLbJF3dLpgnaRAAIJnEPXQz+6akIUlL9Ze+6O5/nFXDAADxpEq5 AACKI/ORomb2ajP7qpn9n5ld0WG/b5nZV8zsmJn9Z9bt6IYY53aNmT1iZt80s/29bGMaZjZiZvNm 9g0zu8/Mzm2zX19duyjXw8xur7//kJmN9bqNaWx2fmZWNrMf1q/XMTP7szzamYSZ3WVmp8zseId9 +vnadTy/2NfO3TPdJF0q6ZckfU7SFR32e0zSSNbf380tyrlJOkvSo5IuknS2pAclvTjvtkc8v7+U 9Pb64/2S3tPv1y7K9ZD0SkmfrD/+VUn/kXe7Mz6/sqTZvNua8Px+Q9KYpONt3u/baxfx/GJdu8x7 6O7+iLt/I+LufXXDNOK5vUzSo+7+LXd/WtJHJf1e91uXiZ2SZuqPZyS9qsO+/XLtolyP1fN29y9J OtfMtva2mYlF/fvWL9drHXf/gqT/7bBLP1+7KOcnxbh2eU7O5ZI+bWZfNrM35tiOrL1A0uMNz5+o v9YPtrr7qfrjU5La/Y/RT9cuyvVotU+/jHyOcn4u6dfrKYlPmtlLeta67uvnaxdFrGuXqGwxyoCj CK5y9++a2XMlzZvZI/Vfq1xlcG6Fvsvc4fxuanzi7t5hDEEhr10bUa9Hcy+o0NexQZR2PiDpQnd/ ysxeIenjqqUOQ9Gv1y6KWNcuUUB39/GEjWs8xnfr/33SzO5R7Z+OuQeFDM7t25IubHh+oWq9hkLo dH71mzPnu/tJM3uepO+1OUYhr10bUa5H8z4X1F/rB5uen7v/uOHxp8zsb81sxN2X1P/6+dptKu61 63bKpWXux8x+1sx+rv742ZImJLW9i11Q7fJaX5b0IjO7yMyGJL1G0mzvmpXKrKS99cd7VesNrNOH 1y7K9ZiV9HpJMrMdkn7QkHoquk3Pz8y2mpnVH79MtXLlEIK51N/XblOxr10X7truUi2ndVrSSUmf qr/+fEmfqD/+RdXuxj8o6b8lHcj7bnNW51Z//gpJX1et+qAvzq3e7hFJn1ZtOuT7JJ0bwrVrdT0k vUnSmxr2+ev6+w+pQ3VWEbfNzk/S9fVr9aCkf5e0I+82xzi3j0j6jqQz9f/33hDYtet4fnGvHQOL ACAQLEEHAIEgoANAIAjoABAIAjoABIKADgCBIKADQCAI6AAQCAI6AATi/wEb9Cq85phjMgAAAABJ RU5ErkJggg== )

定义符号变量

我们使用线性回归的模型对其进行模拟: \bar{y} = wx + b

首先我们定义 $x, y$

In [7]:

X = T.scalar()
Y = T.scalar()

可以在定义时候直接给变量命名,也可以之后修改变量的名字:

In [8]:

X.name = 'x'
Y.name = 'y'

我们的模型为:

In [9]:

def model(X, w, b):
    return X * w + b

在这里我们希望模型得到 \bar{y} 与真实的 y 越接近越好,常用的平方损失函数如下: C = |\bar{y}-y|^2

有了损失函数,我们就可以使用梯度下降法来迭代参数 w, b 的值,为此,我们将 wb 设成共享变量:

In [10]:

w = theano.shared(np.asarray(0., dtype=theano.config.floatX))
w.name = 'w'
b = theano.shared(np.asarray(0., dtype=theano.config.floatX))
b.name = 'b'

定义 $\bar y$

In [11]:

Y_bar = model(X, w, b)

theano.pp(Y_bar)

Out[11]:

'((x * HostFromGpu(w)) + HostFromGpu(b))'

损失函数及其梯度:

In [12]:

cost = T.mean(T.sqr(Y_bar - Y))
grads = T.grad(cost=cost, wrt=[w, b])

定义梯度下降规则:

In [13]:

lr = 0.01
updates = [[w, w - grads[0] * lr],
           [b, b - grads[1] * lr]]

编译训练模型

每运行一次,参数 w, b 的值就更新一次:

In [14]:

train_model = theano.function(inputs=[X,Y],
                              outputs=cost,
                              updates=updates,
                              allow_input_downcast=True)

将训练函数应用到数据上

训练模型,迭代 100 次:

In [15]:

for i in xrange(100):
    for x, y in zip(train_X, train_Y):
        train_model(x, y)

显示结果:

In [16]:

print w.get_value()  # 接近 2
print b.get_value()  # 接近 1

plt.scatter(train_X, train_Y)
plt.plot(train_X, w.get_value() * train_X + b.get_value(), 'r')

plt.show()

1.94257426262
1.00938093662

![]( AAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VOXZ//HPHQEJuGBAUXGj2pYqinFfa6oNQX8/rcDT l7tUlOBT3GhUQH4URK24pCq440L0ebTtU4pC1UxiNVhaV2RX3HcR5UmVKpEt1++PmUCWmcmcmTPb me/79ZoXk8yZM/fh6DU317mu+zgzQ0RE8l9RtgcgIiL+UEAXEQkIBXQRkYBQQBcRCQgFdBGRgFBA FxEJCF8CunNuG+fcIufcPD/2JyIi3vk1Q78ceANQUbuISJakHNCdc3sApwAPAC7lEYmISFL8mKHf BlwFNPuwLxERSVJKAd0593+BL81sEZqdi4hklUtlLRfn3O+A84BNQHdgB2C2mZ3fahvl1UVEkmBm nibKKc3QzewaM9vTzPoDZwLPtQ7mrbYL7GPy5MlZH4OOT8em4wveIxl+16FrNi4ikiVd/NqRmc0H 5vu1PxER8UadoikqKyvL9hDSKsjHF+RjAx1fIUrpomhCH+CcpfszRESCxjmHZfKiqIiI5A4FdBGR gFBAFxEJCAV0EZGAUEAXEQkIBXQRkYBQQBcRCQgFdBGRgFBAFxEJCAV0EZGAUEAXEQkIBXQRkYBQ QBcRCQgFdBHJK6FQiMGDhzN48HBCoVC2h5NTtHyuiOSNUCjE0KEjaGq6CYDi4nHMmVNDRUVFlkfm v2SWz1VAF5G8MXjwcOrrTwNGRH5TQ3n5XOrqZmdzWGmh9dBFRAqYZugikrNCoRDV1fcDUFVVCaCU S7z3KKCLSC6KlS8H2gT5IAZzUEAXkQAppHx5NMqhi4gUsC7ZHoCISDRVVZUsWDCCpqbwz8XF46iq qsnuoHKcUi4ikrPaXxQNar48GuXQRUQCQjl0Ecl5ybbuq+W/c5qhi0jGJNu6X0gt/y0ynnJxznUH 5gPbAt2AJ81sQrttFNBFBEi+FLEQSxiTCegpVbmY2ffOuZ+Z2TrnXBdggXPuODNbkMp+RUTEu5Rz 6Ga2LvK0G7AN0JjqPkUkmKqqKikuHgfUADWRUsTKLa/HypN39j4JSzmH7pwrAl4H9gXuMbOr272u lIuIbBGrFLGzPHmhlTBmtWzRObcjEALGm1lDq98roItIp9rmyUPAFEpKvuKxx+4KfPCOJuM59NbM 7Bvn3FPAYUBD69emTJmy5XlZWRllZWV+fayIBE6IcFC/icbG8OqKHSpampvBDLbZJluD9F1DQwMN DQ0p7SPVKpc+wCYz+9o5V0z4TFxrZn9rtY1m6CLSqa0pl/7AxcSsaHn3XRg1Ci64AM4/P0ujTb9s NBbtBjznnFsMvAzMax3MRUQSVVFRwZw5NZSUfBV9g02b4NZb4aij4LTT4JxzMjvAPKDGIhHJKdEu jj5bPZljHnwQdtwRZs6EH/wgy6NMP63lIiKB0FLR0rV5M9N36cG+zz4L06aF0yzOU4zLW1m9KCoi kqxoJYkV220HF10E2w+AxYth992zPMrcpxm6iGRV+xRLn+5X8drgo9n71Vdh+nQYPrxgZuWtaYYu Inmnuvr+SDAfwWBC3Pd9MytfW8zey5dDSUm2h5dXFNBFJOt24lt+z684gflUcgEc8D4VCuaeaT10 kTwSuDXBzbj58AGs4DK+4XMOZDwLih/VOi1JUg5dJE8Ebk3wzz+HMWPgrbd4adQofvtMeJHWQlin JREqWxQJsMCsCW4GDz4I11wDF18MEyfCtttme1Q5RxdFRSS3vfceVFbC2rXw7LNw0EHZHlGgKIcu kifyek3wzZuhuhqOPBJOPhlefFHBPA2UchHJI3m5JviyZXDhhdCzZ7htf7/9sj2ivKAcuojkjvXr 4Xe/g7vvDv950UUF2SCULOXQRSQ3vPRSeFa+337htv1+/bI9ooKgHLqI+Ofbb+GKK2DoUJg8GZ54 Im4wD1xdfZZphi4i/qivD1ew/PSnsHw59O4dd/P2dfULFkS5M5F4ohy6iKSmsRGqquC55+C++2DI kITeFpi6+jTJxh2LRKSALZ40if/drR9P/O0Fnr399rjBXOmV9FPKRUS8W7WK1b/8Jd3/+RKn2Xj+ +ckPKT7nP5k48Q3mz38daFtWGS29MnHipSxYMI6mpvAuw3X1NVk5nKBQykVEEmcGDz8M48fz2HYl jPygivWMirx4JUVFD9HcfBvQdq2ZWOmVqqrK/KurzxClXESyLAhphZjH8P77UF4Od90FdXXM2u8A 1tOt1Tv/EQnmI4DwbLwlWMdSUVFBXd1s6upmK5j7wczS+gh/hEjw1dbWWnFxX4NZBrOsuLiv1dbW ZntYnkQ9hqeeMvv978169za76SazjRujbltU1Dvy3CKPWVZePiz2fvPs7ybTIrHTW7z1+gbPH6CA LgWivHxYzICWL9ofw/7cYG/usJPZCSeYvf12h+1ra2utvHyYlZcPs+uvvz5u0G69rYJ555IJ6Loo KiIddGUDE7iQS/gD16/vwYJvjN5jxnfIc1dUVLT5+bDDDmuVEw/nz/Ny/Zl85fUbwOsDzdClQAQh rVBbW2s/3bbEltHb5tLV+lFp0KfDMSU62w7C30m2oJSLSHbldVrh22/Nxo6173fayS7quYvBwwYd 00ilpccmHKSDkIbKlmQCulIuIj5qn4LIG3/7G4waBccey7Zvv81HZ4+G+ugVcx999EWknjxcgtjU BNXV9+fncQeMArpIAWjJY69ZsxroQp8+vcP57COOgKuugro6uPdeOOUUIJzrXrBgBE1N5wJXRvay jKKiWWzc2DPhz926n/DPah5KLzUWiQRErIuPW7s0zyV8t6NbATij2+XM2r4L3c88M7xe+Q47RN3f mjWrWbt2LR988GmkznwZMBOYDnR+s2pdFE1OMo1FyqGLBEC8i49b89jhP/uyyv7EcbaS7nbK9rsn lOvvmAuvspKSffPzWkGeIIkcekqdos65PZ1zzzvnVjjnljvnLktlfyKSnOrq+1vltWN1aRrns4Al /IR3eZ1BTOfpf/+OoUNHJNHVeiCHHjpIHZ45JtUc+kZgrJktds5tByx0ztWb2Zs+jE1EfFBVVcnH L5zLHet7sjOfMoT9WUwVXi5qdpYLV1olN6QU0M3sC+CLyPNvnXNvArsDCugiGRIKhVizZjVFRWNp bg7/bkvA3byZirfeYum2G3h0z75M2u4I3nvvM/i3t8+oqKhgzpyaDk1DLZ+vG1XkCK85mlgPYB/g I2C7dr9PZ5pJpKC1zZ1XWVFRbystPSGc116xwuyoo8yOP95s5coY70m92Ue15ulBturQI+mWPwOX m9m37V+fMmXKludlZWWUlZX58bEiBa9t7hyamw9k15InqHjlFTj3XJg6FUaPhqKtl8vizbYlexoa GmhoaEhtJ16/Ado/gK5ACLgixutp/h4TKVztZ8eH8Vt7b7sdzE45xezjjxPeTyodrmrvTw8y3foP OOAR4LY426T7uEUKVkswLeY+u4Uh9gVFtuTqq82amz3vI5WAnNdLHuSoZAJ6So1FzrnjgBeApUDL jiaYWW2rbSyVzxCR+F69+WZ2nzKVt3bcCW6/lRPPOMPT+3Wz5tyU8TsWmdkCMysys4PNrDTyqO38 nSLB4dddijzv5+uvobKSw2fMoN+f/sCJqz7hxDPOCMRdkyRJXqf0Xh8o5SIB5lf+ONZ+WlIZpaXH WmnpCVtSGgsnT7Yvt+1u8/r1t2dnz05pPMqB5ya0fK4EWS7maf0q2Yu2n63L1FZtWZN8F+6wPxV1 tbfZxn7K+Dht/t7Gk4t/t4UumYCu1RYlLwSpeSXRrsqty9TOBW7hPBy3cAMPN+/M+Uzhe0YBqS1f qw7PgPH6DeD1gWbo4oNcbV7xmq6Il1pp//vS0hMMZtleDLFnGGivc7CVstDgqJh/F17Go1RLbkMp FwmqXA3oZt7SFfGOo/1+ap9+2sZ23d6+oruNp4d14QGDWdatWy/r1m3nmIE40fHk8t+pKOUiAZYL N0qIlZ7w6y5FbfazciVcdBFH/GgvqnbcncVN6ziQRyM3pvgDQMxOz1y5a5LSOVng9RvA6wPN0MUn 2bxwl+5qli02bDC74QazPn3M7rzTbPNmH4/C41hydN+Fgkw3FiVCjUUSBKk237SerZ5wwiHMn/86 0G7munAhjBwJ/fqFbwe3114+H0X8cfk5i1azUuqSaSxSykUkjUKhEBMmXMeSJW9Ebt8GCxa0vWVb /ZNP8q/Lr+Lnqz7m0ysu56Bp08B5u/NYsnIlPSM+8Tql9/pAKRcJgNQadmJXpbx88832jtvGHuNI 25npgUlNKOWSOpRyEUkfL+mJUCjE2WePobFxEuE68rbph1+UzeaJH+/OV7Me4cL1lczj9i2vBSU1 oYuiqUkm5aKALuKzrU1Q/YGLgV0JB/NwU9Twblfw6A5dKB4+nNPf+pwnG4ajXLO0pxy6SA7YetOJ 1oH8XPq6sczasQvH9+hB8X//N6H16/l4wnXRbx3nA82QC09Kqy2KSDwVQA1wD5U9H+WjXjBk1K/o +c47hNavZ+jQESxaNIrm5pEUFVVRWvowc+aEg3mqqyW2/Cuhvv406utPY+jQEVp5sRB4Tbp7faCL ohJQseriW18Q3JNqe6aom63t39/s1Ve3bBOrS9Ovi4nqAs1/JHFRVDN0kThirS0ebwZcUVHBnNkP M33AbSztOoF9zzuL7d96Cw47rNPPa3uP0PBiZC1pE5FOef0G8PpAM3TJU/Fmy3FnwCtXmh13nNkx x5i98Yanffs1s1bZYP5Di3OJJCda+iRecI322pCTTje78cZw2/6MGZ227Uf7TD8DsdY4z2/JBHRV uUjBi7XWejztFws7etvf8McPd4KGJnjtNdh7704/N1qXZkVFBXPm1MRceMsLdYEWHtWhS8GLte5I VVVlm0BfXNy2ZT8UCjHj5ns49/03Gfr1l2x7xx1w3nkZa9uXYFMduoiPOpstV3TvTsUnb8DhB8OM GdC3b7aGKgJohi4FoLMGm/Ypl/Yz8Q7WroVx42DePLjzTjj99LSOXwpTMjN0lS1KoCXSYNMyEy8v n0t5+dz4zT1//SsccABs2gTLlyuYS07RDF0CLZl1uaPN2P/68B2c+OST8PLLMHMmnHhi+gcvBU05 dBEftG3uMU5vepGDzx8Bl14Cy5ZBjx7ZHqJIVEq5SKBVVVVSXDyO8JoqNZHFrypjbh8KhVi4cAkA e/AJ8ziV8TzFbw8+Gm69VcFccpoCuuScWO32yWwbLT8e62JnS6rlX42/4GLG8DoH8ArdOL77Bk6d Ot6XYxNJK6+dSF4fqFNUPPDSKem1q7Kzzsny8mH2Q6bZfI63fzLAfsJBVlKyr7osJSvIRus/8BCw GlgW4/V0H7fkoVjB1ctaJl62jRX8W8Yx5KTT7Y7d+ttXbGeXcocVsUkrFEpWJRPQ/bgo+jAwA3jE h31JAYjVap/ONvW2FzqhqQkmTLiOlSvf5cdNv+ZBHqLRfcaxXXfg7Y07Av/l680mRDIh5YBuZn93 zu2T+lCkUEQLrtXV91NRUdFhjZR4QdXLttGs/vBzJjUdxoXcydXcTI1B6cAHKO8zN7L/6F8yuhOQ 5CqVLUpO8bI4VbRtIVx7Hv55a7BtH/xP6jaWB9Z9z6v05iCWsppdgRr69OnrqUY9E/+6EEmUL41F kRn6PDM7MMprNnny5C0/l5WVUVZWlvJnSv7y2mqf6Iy4s/2GQiHuvukuLnxnBYObvuHN//xPjq2e mXjLP8k1KokkoqGhgYaGhi0/X3vttZ4bi/yqZNkHXRQVDxJdqzvRSpba2lorKdk3/kXSp54y22sv s5EjzRobPY2jhW7tJplCtm5woYAu6ZJIAN0a9I+Kvu1XX5mdc45Z//5m9fUpjUd3ApJMSSagp5xD d849DpwA9HbOfQL81sweTnW/IonaepF1V7amQqC4+9XccuhIGDgQzj473Lbfs2dKn+XnDShE/OZH lctZfgxEJBpvlSwVhFv8pzCw1yr+9uP+7DJvHjz5JBx55JatUq1S0Z2AJFdptUXJeV7WM3c0M6br 5VT3KOLjU0/lslXfsqmoaMv7PK99LpIlyay2qIAugRAKhXh86u8Z++br7L1Lb1aMHUv52MkdAnd1 9f2qUpG8oBtcSE6It2BW+9e8LMQV06ZNVCxdyqy3FjJo0jX0WrGCa2fXtWpeCs/IW2b5IkGlxiLx VbzGm/avzZ9/JtCVDRtu6bBtwpYsgQsvhF694JVX4Ac/iLt5qt2lIjnNa1mM1wcqWywo8coMO74W o8wwEU1NZhMnmu28s9lDD5k1N7d5OV55odfac5FsIEuLc4lk1j/+EZ6V779/eIa+224dNolXXqgq FQkqBXTxTSgUYs2a1RQVjaW5Ofy71imN9umObt1WAlexYUPHbaP697/hmmtg9myYMQOGD487HgVu KTSqchFftM2PL6OoaBaDBg3kxhsntAmq7UsQgcRqwkMhGD06fHPmW2+FkpK0Ho9ItqlsUbIiFApx 9tljaGychJ/lgKFQiPtvnMHFby/j2Ob19HjkERg82Jcxi+Q6lS1KxrXMzBsbd/Z3v7W1PHrqGdw5 fwErVv2Yvb9pJqSJgUhcyqFLSmKuo5JEOWBLOqbk+yZGL32FCRt7Mow/8xJHw/c1W26C0Xpb0E0m RFoooItPtq6jUlLyFY895q2ePBQKMfT08znn+1P4HfXcwyZuYBobODr6trrJhEgHCuiSko6NOh94 DuYAj1/3e/76fW+2YwUn8g+WU0NR0dXQ3DWy360z/ni3sBMpZArokpKUl5PdtAnuuIM7XmngWoZx B/9FM9sABzJo0P706eT+niKylapcJHuWLQs3CG23HS+cdx5DxkxIaBVErZgohUBli5If1q+HG26A e++FG2+EkSPBOU8XOnVRVIJOAV1y34svhmflP/oR3H037L57tkckkpOSCejKoUtmfPstTJwI//M/ MH16uG3febuhuYjEp8YiSb+6OjjwQPj663De/D/+Q8FcJA00Q5f0aWyE3/wGGhrgvvtAeW6RtNIM XfxnBn/+MwwcCDvsEJ6VK5iLpJ1m6OKvVatgzBh4881wvvzYY7M9IpGCoRm6+MMMHnwQBg0K33hi 0SIFc5EM0ww94DJSr/3++1BZGb7oWV8fDuoiknGaoQdYS0dlff1p1NefxtChIwiFQr7te0j5MO79 8UFsKC0N58hfeqlNMA+FQgwePJzBg4f79rkiEptm6AGWrkWsQqEQE39xDnet35EmunLItl2pPugg Krp0abONVkQUySzN0MWb9ev58tdX8Mz6DTzIOE7kDVasr96S1mnR9sskHNjbbyMi/tIMPcA6Lm3r /aYTbbz8Mlx4Ifut/ZpSruUzKv0ZqIj4IuWA7pwbAtwObAM8YGY3pTwq8UXKS9u2+O47mDQJHn8c bruNtb160TjsV9AUvlFztC8K379MRKRTKS3O5ZzbBngL+DnwGfAqcJaZvdlqGy3OlUG+V7U8+2y4 guWYY+D226FPn4Q/RysiiiQv46stOueOBiab2ZDIz+MBzGxaq20U0DMk0XXCEwq0//oXXHllOKDf ey+cfHLaxy8iWyUT0FO9KNoP+KTVz59Gfidp0FkZYCIXIhMqZfzLX8Jt+8XFsHy5grlInkg1h57Q 1HvKlClbnpeVlVFWVpbixxYev8oA45YyfvEFXHJJOIj/8Y9w3HFKm4hkSENDAw0NDantxMySfgBH AbWtfp4AjGu3jUnqysuHGcyycI+9Gcyy8vJhbbapra214uK+ke1mWXFxX6utre10P6UHH2O37H+I /W+XrvZA373slBN/YbW1tQntT0TSIxI7PcXkVGforwE/dM7tA3wOnAGcleI+JUmJVLW0rz75UddL uWXJ9+xkO3ESPVm8eiqshudfHMGAAQPS0pgkIumRUkA3s03OuUuAEOGyxQetVYWL+CfRMsCKioq4 Abcl6N92632c9sl7nPVuE9NsKNVsZDOn0zp4f/TRdek4FBFJk5Tr0M3sGeAZH8YicfhWUw5U7Lkn Fd+ugr69uKD3z5j1z/8DzG231TI2bFhHUdFYmpvDv1EtuUhu002iAyrqxcwNG2DaNJgxA6ZOhdGj CdXXRy62ngvUALcCy4CZwHRgGUVFsxg0aCA33jhB6RaRDMl4HXpCH6CAnnHR6tGfm3YNR82cCXvv DffcA3vu2Wb76ur7WbNmNdCFjz76lMbGSbSkX6CG0tKZ9OnTF1C1i0gmKKALAIMHD6e+/jRgBD34 jqkM54JuDZTMehjOPLPTGzS3fn/YlRQVPURz821A7IYlEfFPNhqLJIf9jOdYykHsyjeMPvrncNZZ nQZzCM/Ai4vHEU7B1FBUNCsSzLVyokgu02qLATRu9Nmc9dx5nLS5mF9zPs8VP86cCVMSfn/7C7Br 1gxk0aI0DVZEfKOUS9A88QRccgkfl5Zy2XeOdV26ppzzTnSNGBHxj3LoAeK55X71arj0Uli8GB54 AH7607SMp+XCaZ8+vXVxVCSNkgnoKbX+J/JArf+eeWq5b242mzXLbJddzMaNM1u3LjfGJSIpIYnW f83Qc1DHKpMaysvnUlc3u+2GH34Io0fDl1/Cgw/CIYfkxrhEJGWqcikUzc3h5qDDDoOf/Yy6669n 8PgbYi6rKyIFwuuU3usDpVziqq2ttfLyYVZePmxL+iJuauONN8yOOcbsuOPMVq7MaBpEKReRzCGJ lIsCehbFC5AdAv2GDWbXXWfWu7fZXXeZbd5sZoktq+v3mNt/AYmI/5IJ6KpDz6J4N5tos2ria6+F 0yv9+sHrr8Nee2VtzJ2t5igi2aOAnsvWrYMpU6CmBqqr4Zxz2nR6hkIh1qxZrRURRQTQRdGsat9i Hw7GleEXn38eDjoIPv4Yli2Dc8/tEMyHDh3BokWjaG4eSVFRFaWlD3tq+OnsHqUikme85mi8PlAO Pa4OOemvvzarrDTbYw+zuXNjvi/V3LkucIrkNpLIoWuGnmUVFRXU1c2mrm42FevXw8CB4Zn48uVw 6qlp+9y2+fv0L7ilfw2IpJ9y6Lngyy/hsstg4UJ49FEoK+v0LYnekq5F+6UEMqn9WjALFozQWjAi 6eB1Su/1gVIusTU3mz3ySLht/6qrzL77ztPbEy0hjJZeuf766zOWcsl0aaVIEKCyxczzvIhWi48/ hosvhs8+g6eeCpcletx/oiWE0coj58+f69s9SkUkR3j9BvD6IMAz9KQuLG7ebHbnneEGoeuuCzcM +bn/KLI9Q9YFWBHvUKdoZnkNlH+fOdOW9upty3cssb/ff7/v+48lFwKqOkxFvEkmoKvKJUmhUIiF C5cktvHGjbx9wQUMGFXJfV+fzIHf/IoTLp7AIYeUJVXx4bVipOUOROXlcykvn5uVC5JtqnmU2hFJ D6/fAF4fBHCGvnXGW2XQJ/7Md+FCs0GD7JXeu9he3GpQa9BxtpzoIl2ZvJgpItmDUi6Z0TYVUmtw lJWU7Ns2sK5bZ3b11eEKlpoaK//50Mh7OqZRSkuPTXiRrmznw0UkM5IJ6KpySVkF8AWHHjp3ayrh hRfgoougtBSWLoW+fanq25cF/xhBU1P/Dnv46KMvElukC9La/CMi+U0BPQkxm3rWroVx42DePLjz Tjj99C3vacljT5hwHUuWtF1Ma++9B9DYmOJni0jBU0BPQktwblPDvXEjHHAADBkSbtvv1WvL9q1r yW+8cRJAm/cCkU7K8PbxgnTUz9ZFRhGB5O8p6pz7JTAFGAAcbmavx9jOkv2MvPDVV3D55fDyyzBz Jpx4YpuX27e9FxePi1plknSDkogEUjL3FE0loA8AmoH7gKqCDOiPPQa/+U14adupU6FHjw6b6MbK IpKMZAJ60ikXM1vZ8qEFa+XKcL788MOzPRIRETUWpWTq1E6DedybWEShZWZFJFlxUy7OuXpg1ygv XWNm8yLbPE+hplwSlGh+PNF8u4gEn+8pFzMrT21IYVOmTNnyvKysjLIE1vsOklRWRWypRxeRYGto aKChoSGlffhVthj3W6R1QA86VauISDLaT3avvfZaz/tIOqA754YC04E+wFPOuUVmdnKy+wuCVO/M o6YhEUlF0mWLCX9AgeTQQ6EQZ589hsbGSaRSoqgZvohAhuvQE/6AAgjoW2fm/YGL2RrQr6Sk5AkO PXSQgrOIeKKAniVbm4d2JRzMbwKWATMJZ6VUsSIi3mS0sUiiqSBcbz6FLl3eZ9Om6ahiRUQyRY1F PmjbPPQFxcUfcOCBP8n2sESkwGiG7oNoKyBC4isoioj4QTn0NFLFiogkSxdFRUQCIpmArhy6iEhA KKCLiASEArqISEAooIuIBIQCuohIQCigi4gEhAK6iEhAKKCLiASEArqISEAooIuIBIQCuohIQCig i4gEhAK6iEhAKKCLiASEArqISEAooIuIBIQCuohIQCigi4gEhAK6iEhAKKCLiASEArqISEAkHdCd c7c45950zi1xzv3FObejnwMTERFvUpmh1wEHmNkg4G1ggj9Dyi8NDQ3ZHkJaBfn4gnxsoOMrREkH dDOrN7PmyI8vA3v4M6T8EvT/qIJ8fEE+NtDxFSK/cugjgad92peIiCShS7wXnXP1wK5RXrrGzOZF tpkIbDCzx9IwPhERSZAzs+Tf7NyvgFHASWb2fYxtkv8AEZECZmbOy/ZxZ+jxOOeGAFcBJ8QK5skM SEREkpP0DN059w7QDWiM/OpFM/u1XwMTERFvUkq5iIhI7vC9U9Q590vn3Arn3Gbn3CFxtvvQObfU ObfIOfeK3+NIBw/HNsQ5t9I5945zblwmx5gK51yJc67eOfe2c67OOdcrxnZ5de4SOR/OuemR15c4 50ozPcZUdHZ8zrky59w3kfO1yDn3/7IxzmQ45x5yzq12zi2Ls00+n7u4x+f53JmZrw9gAPAj4Hng kDjbfQCU+P356XwkcmzANsC7wD5AV2Ax8JNsjz3B47sZuDryfBwwLd/PXSLnAzgFeDry/EjgpWyP 2+fjKwMp6CFOAAACfUlEQVTmZnusSR7f8UApsCzG63l77hI8Pk/nzvcZupmtNLO3E9w8ry6YJnhs RwDvmtmHZrYR+APwi/SPzhenATWR5zXA6XG2zZdzl8j52HLcZvYy0Ms51zezw0xaov+95cv5asPM /g78K84m+XzuEjk+8HDusrk4lwHPOudec86NyuI4/NYP+KTVz59GfpcP+prZ6sjz1UCs/zHy6dwl cj6ibZMvnc+JHJ8Bx0RSEk875/bP2OjSL5/PXSI8nbukyhYTaThKwLFmtso5tzNQ75xbGfm2yiof ji2nrzLHOb6JrX8wM4vTQ5CT5y6GRM9H+1lQTp/HVhIZ5+vAnma2zjl3MvAE4dRhUOTruUuEp3OX VEA3s/IkB9d6H6sif37lnJtD+J+OWQ8KPhzbZ8CerX7ek/CsISfEO77IxZldzewL59xuwJcx9pGT 5y6GRM5H+232iPwuH3R6fGb271bPn3HO3e2cKzGzRvJfPp+7Tnk9d+lOuUTN/Tjnejjnto887wkM BmJexc5RsfJarwE/dM7t45zrBpwBzM3csFIyFxgReT6C8GygjTw8d4mcj7nA+QDOuaOAr1ulnnJd p8fnnOvrnHOR50cQLlcOQjCH/D53nfJ87tJw1XYo4ZxWE/AF8Ezk97sDT0We/4Dw1fjFwHJgQrav Nvt1bJGfTwbeIlx9kBfHFhl3CfAs4eWQ64BeQTh30c4HMBoY3WqbOyOvLyFOdVYuPjo7PmBM5Fwt Bv4JHJXtMXs4tseBz4ENkf/3Rgbs3MU9Pq/nTo1FIiIBoVvQiYgEhAK6iEhAKKCLiASEArqISEAo oIuIBIQCuohIQCigi4gEhAK6iEhA/H8HLashiHbumgAAAABJRU5ErkJggg== )