Files
ailearning/docs/da/123.md
2020-10-19 21:08:55 +08:00

24 KiB
Raw Blame History

Theano 实例Logistic 回归

In [1]:

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import theano
import theano.tensor as T

Using gpu device 0: GeForce GTX 850M

sigmoid 函数

一个 logistic 曲线由 sigmoid 函数给出: s(x) = \frac{1}{1+e^{-x}}

我们来定义一个 elementwise 的 sigmoid 函数:

In [2]:

x = T.matrix('x')
s = 1 / (1 + T.exp(-x))
sigmoid = theano.function([x], s, allow_input_downcast=True)

这里 allow_input_downcast=True 的作用是允许输入 downcast 成定义的输入类型:

In [3]:

sigmoid([[ 0, 1],
         [-1,-2]])

Out[3]:

array([[ 0.5       ,  0.7310586 ],
       [ 0.26894143,  0.11920293]], dtype=float32)

其图像如下所示:

In [4]:

X = np.linspace(-6, 6, 100)
X = X[np.newaxis,:]

plt.figure(figsize=(12,5))

plt.plot(X.flatten(), sigmoid(X).flatten(), linewidth=2)

# 美化图像的操作
#=========================
plt.grid('on')
plt.yticks([0,0.5,1])

ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')

ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data', 0))

plt.legend([r'$s(x)=\frac{1}{1+e^{-x}}$'], loc=0, fontsize=20)
#=========================

plt.show()

![]( AAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYVOXZ+PHvWTqCCKgYAQXFrgEswRhUNFYsRBNBjQVs xK6vsaFG9IcdlURf0RiixIKoMYqKIGoWX6KIwRZRUTREigGUIiB19/z+eFiWssC2mTNn5vu5ruea ObMzww33PMu9Z+/zPFEcx0iSJElpVpR0AJIkSVJNWdRKkiQp9SxqJUmSlHoWtZIkSUo9i1pJkiSl nkWtJEmSUs+iVpI2IYqiP0dRNCuKon9t5Dl/iKLoiyiKPoyiqHM245MkWdRKUmU8Ahy1oS9GUdQd 6BDH8U7AecDgbAUmSQosaiVpE+I4/j9g3kaecjwwdNVz3wG2iKKoVTZikyQFFrWSVHOtgWlrHE8H 2iQUiyQVJItaSaod0TrH7kEuSVlUt7ovHDRoUNypUye6desGQHFxMYDHKTguu58r8Xhs/tJwPGzY MG655RaAeN2vH3fccXTq1OlYVmnbti2DBg2aWHa85vOjKOLMM88EoF27dqvfI+m/n8ebPi57LFfi 8bhqx2WP5Uo8lT1+/fVili+Hffbpxg8/hK8vXw577NGNJUtgwoRwvMMO3Vi6FP71r3DcunU4njIl HLds2Y1ly2DatGJWrICmTcPxnDnFrFwJDRp0Y/lymD8/HEdROF66NByXlnZb9a9Y9u+ZzeNDLo/j eBCbEMVx9U4m9O/fP+7fv3+1Xqtk9e/fH3OXXuYvGVOnTuW4447jX/9afwGEkSNHcv/99zNy5EjG jx/PZZddxvjx4yt8nyiKqO73XSXLuZdu2cjfihXw/ffrj0WLYOHCMMruL1oUxuLFFY8ffghj2bKM hlwl9epB/frhds1Rt27Fx3Xrrn2/Tp21Hy8bdeqEsebxmo/fdFN0UxzH/TcVX7XP1E6dOrW6L1XC zF26mb/sO+WUUxg7dizffvstbdu25aabbmLFihUA9O3bl+7duzNy5Eg6dOjAZpttxiOPPJJwxMoE 5166VSZ/cRwKzblzKx7z5689Fiwov//997BkSWZib9y4fDRqtPZo2HDt+xWNBg3Kb+vXD7frjvr1 1x/16oWvlRWi0bpNVlly002Ve161i1pJKhTDhg3b5HPuv//+LEQiqSpKS2HePJg1C/77Xxg+HGbP hjlzwvj22/XHypXV//OKiqBZM9h88/LRtGkYTZqsf9ukCWy2WfkoO27cuPy2YcPkism0qXZR27t3 71oMQ9lk7tLN/EnJcO7ljtLSUJxOnw4zZ4bxzTdhrHl/zpw1i9TejB696fdu0gSaN4cWLcpH8+bl j22xxfpj881DMdu4sQVohhRX5knV7qnFK3slqcrsqZU2bdEimDq1fEybVj6mT4cZM0L/amU0awat WoWx9dbhdqutwthyyzDK7rdsGX7drpxTqR8Vqn2mtri4ePWVeUoXc5du5k9KhnOv9pSWhuJ0ypTy 8dVX5UXsd99t+j1atoQ2bWDbbcP40Y/Wvt1mm1DAlhWp5i//2VMrSZIy4rvv4LPPysfkyeUF7Mau 6m/QANq1C2P77cNo0wbatg23bdqEC6OkNdl+IElZZPuB8tGcOfCvf4Xx8cflRey33274NdtsAx06 hLHjjrDDDtC+fShkW7UKF11Jq2S2/UCSJBWWlSvh00/hvffgo49CEfvRR2F1gYo0aQK77lo+dtkF dtopFLFNmmQ3duW/jPfURl4GqJTK1bNp9oVJySi0ubd8OUyaBBMnhiL2vffgww9h6dL1n9ukCey5 Zxh77QW77x6K2Natc2c1gELLXyHKypnaXC0OpA3xhzFJhWb6dBg/Ht5+O9xOnFhx3+uOO0LnztCp Uyhg99or9LzaLqCkZbyn1v4xpZGfW2WKny3lgpKS0DYwdiz84x+hkJ0xY/3n7bwz7LMP7L13uO3U KazXKmWZPbWSJCms6fr++6GIHTsWxo0LW7yuqVkz2H//8tGliwWs0sV1aqWUce5JyUjT3IvjsHzW mDHw6qtQXBw2NFhTu3Zw8MFw4IFwwAHhIq58biFIU/5UPZ6plSQpD3z3Hbz+eihiX3017L61pp12 CkXswQfDQQfBdtslE6eUKfbUShXwc6tM8bOl2jR5MowYEcZbb4WduspstRUcfnj5aN06uTilGrKn VpKkfLJyZSheR4yAF1+Ezz8v/1q9etCtGxxxRBgdO+Z3O4G0rmp/3IuLi2sxDEmV5dyTkpHU3Fu5 Et54A/r2hR/9KLQP3H13KGhbtIDTT4ennw67d73+Olx9dVhyy4J2bX7vzH+eqVXOWbhwIX369OHe e++lbdu2SYcjSVlXUhJWKBg+HP76V5g9u/xrHTpAjx5w/PHhAq+6/k8uAfbU5rySkhLq1KlT5det XLmSuin8TjdkyBCmT5/OTTfdxNSpU9kuoSsZ/NwqU/xsaWM++ACGDoWnnoL//rf88Q4doFevMPbc M3d26ZKypFKfeIvaHPbcc8/x/fff07t37yq/9uabb+awww7jgAMOqP3AsqCoqMiiVnnJz5bWNXs2 PPFEKGY//LD88R12gJ49QyHbsaOFrApapT799tTmqLFjx/Lmm29Wq6AF6NevH7fccguffvpp7Qam xDn3pGTU5txbvhz+9rfQRtC6NfzP/4SCtkULuOgimDABpkyB224Lu3hZ0Nac3zvzX/p+P10Avv/+ e6666irGjh1b7feoW7cugwcP5pe//CVvv/12KlsRJCnfTJsGf/wjPPwwzJoVHqtTB447Ds48E449 Fho0SDZGKa1sP8hB11xzDdtuuy2XXHJJjd+rT58+/OxnP+Occ86phciyx/YD5Ss/W4WntDSsSvDA A2EprrK1ZHffHc4+G379a2jVKtkYpRxnT20aLV68mO22244pU6bQvBY23X7vvffo1asXX3zxRS1E lz0WtcpXfrYKx4IF8Oc/w+DBUPYtuG5d+OUv4YILwva0thVIlWJPbRq9/PLLtG/fvlYKWoBOnTrx 3Xff8f7779fK+2WT//FXzLknJaOyc2/6dLjySmjbNvTKfvEFtGkD/+//hfaDp54K29Ra0GaX3zvz n42WWfb1118zYMAAGjduTKNGjWjYsCFXXnkljRs3BmDMmDEbXbFg4sSJPPbYY9SpU4epU6fypz/9 iYceeoj58+czY8YMbrrpJnbYYYfVzy8qKqJr166MHj2azp07Z/zvV1NPPvkk48aNI4oirrnmGrp2 7cqFF16YdFiStEkffQQDB8KwYWHDBAg7fF16aeiV9dIGKbNsP8iiJUuW0LFjR1566SV23nlnvvrq K7p06cKQIUM4/vjjAdhvv/0477zzOPfcc9d7/VdffcU999zD/fffD0Dv3r15++23GTp0KKWlpRx4 4IEMHDiQyy+/fK3X/fa3v2XGjBkMGzaswrjOPvts3nvvvSr9XX7/+99z0EEHVek1aeLnVpniZyu/ xHHY7euuu2D06PBYURGcdBL89rew777JxifliUr9XiMnf25M6lcymf5/ZsyYMcyZM2f1LllbbLEF l19+OYcffvjq50ydOpUtttiiwtfffffd3HnnnauPFy9eTIsWLdh///2ZPn06V1xxRYVLgDVv3pxx 48ZtMK4hQ4ZU828kSYUpjsPFX/37wz/+ER5r3Dhc+HX55dC+faLhSQXJntosat68OQsWLGCvvfbi kksu4ZNPPqFfv340atRo9XMWLFiwwaL2yiuvZLPNNlt9/Pbbb3PYYYcB0KZNG+68884Ke3FbtmzJ ggULavlvo6Q496RkFBcXry5mDzoIDj88FLQtWpT3y/7hDxa0ucrvnfmv2kVtJsVxMiPTDjzwQG6/ /XaWLVvG/fffz0EHHcQDDzyw1nOiKKK0bL2XdbRr1271/cmTJzNz5kwOOeSQTf65paWl/rpTkmog jmHixFDMHnYYjBsXitlbb4WpU+H668OxpOTYU5uQTz75hLPOOouFCxcyadKk1Y+3atWKQYMGccop p2z09YMHD+byyy9n/vz5NGzYEAg9t2teJFZmwIABvPTSS4wfP77C9zrvvPOqvDrC3Xffvbqntqgo J3822qgoiigpKdno1/3cKhP8bKXPu++G1QzK9sNp0SL0y150ETRtmmxsUoFIb09tPjrxxBP58ssv +XDVxt677747p512Gq+++upaz2vfvj3ffffdeq9fsmQJN954I2eccQZ77rknY8aMoWPHjqsL2tLS Uu666y4GDx683mvnzp1bYbFb5o9//GNN/mobPLMsSWn21Vdw3XVhCS6A5s3Li9nNN082Nknrs6c2 SyZOnLjWBWGzZ89m2LBh/O53v1vreV27duWTTz5Z7/UjR45k4MCBTJo0ic8++4wpU6bQYI29FG+5 5ZYKLxKDcFZ4n332qZ2/iBLn3JMya+7csL7srruGgrZBA7j6avjLX4rp18+CNq383pn/PFObJY89 9hhjx46lX79+LFy4kMWLF/P73/+efddZ7+Woo47isssuW+/13bp1o3fv3kycOJH333+f8ePHc8EF F/Cb3/yG+vXr06NHD7p06bLe61auXMlbb7211qoJ+W7BggWMGzeOTz/9lK222orXXnuNBx54gKb+ nlDSRixdCvfdF/pk588PK/GccUa4CGy77cCaSMpt9tTmmGXLltG6dWs++ugjtt122xq/31tvvcV5 553Hxx9/XAvRbdzChQvp06cP99577+plyzJh0aJFDB8+fL3Ht912W44++mimTp1Ku3btuPXWWzni iCPYZZddqlzQ+rlVpvjZyk2vvAIXXwxffhmODzsM7rwTUrBnjVQIKtVTa1Gbg/r378+SJUu44447 avxeJ510Et27d6dPnz61ENmGDRkyhOnTp3PTTTcxdepUtttuu0q9bvDgwZx//vm1GsvChQtp1KgR J5xwAiNGjGDatGmVjqeMn1tlip+t3DJ1alhX9vnnw/Huu8M998ARR7iNrZRDKjUb7anNQVdddRWv vPIK8+bNq9H7TJ48ma+//nqDvba16eyzz+bGG2+s8utmz55d67HccccdPP744+y44468/vrrzJgx o9b/jCQ596SaW7oUBgyA3XYLBW2TJnD33fDBB3DkkRUXtM69dDN/+c+e2hzUuHFjhgwZwrnnnssz zzxDVI3TBUuXLuXiiy/mySefrNbrc0VpaSn33nsvdevWZYsttmDu3LnrbQO8rgEDBmQpOklpNGpU aDWYMiUcn3IKDBwItdDxJSlB1T5T261bt1oMQ+vab7/96Nu3L/fdd1+1Xn/rrbdy6623suOOO9Zy ZNnVt29fSkpKuPTSS/nVr37FnDlzkg4pcc49qXrmzAkF7NFHh4J2t93gjTfgyScrV9A699LN/OU/ e2pVq4qKijbYUzt79mwGDRq01udh3LhxdO3adfVxkyZNuO666wD47LPP2HvvvXnooYcoKipiyZIl 9OzZk82zsJ6On1tlip+t7ItjGD48nJ399lto3Bj694fLLoN69ZKOTlIlZHbzheLiYn/qUZVsvfXW 3HrrrWs9dtNNN22wF/fDDz9kjz324PTTT89GeKnh3JMqb+ZMuOACeOGFcHzoofDww7CR/Wg2yLmX buYv/6Vvf1PlvNo6C7XLLrus3jGt7H2HDBlSK+8tKb/FMTzySFjN4IUXwna2f/wjvPZa9QpaSbnP 9gPViieffJJx48bx0EMP0bNnT7p27cqFF164yddt7EwtwKBBg4iiiC233JIffviB448/nlatWtVm 6BXyc6tM8bOVeTNnwllnwejR4fiYY+DBB6FNm2TjklRtrlOr3HfnnXdy1VVXJR3GevzcKlP8bGXW 3/4G55wTtrpt0QL+8Ac49VTXnJVSznVqlftysaDNdc49aX2LFsG558KJJ4aC9qijYNIk+PWva6+g de6lm/nLf65TK0lKtXffDcXrF19AgwZw111w0UWenZUKje0HUgX83CpT/GzVnpISuOMOuPFGWLkS 9torrDm7555JRyaplmV2SS9JkpLyzTdhI4WxY8Px5ZfDrbfCGgumSCow9tRKKePcU6ErLobOnUNB u802Ydvbe+7JfEHr3Es385f/XKdWkpQKpaWh3eDnP4dZs+CQQ+D99+HII5OOTFIusKdWqoCfW2WK n63qmTcPzjwTXnwxHF97Ldx8M9S1iU4qBPbUSpLS77334Fe/gn//G7bYAh57DI49NumoJOUae2ql lHHuqZAMGQIHHBAK2n32CQVuUgWtcy/dzF/+s6dWkpRzVq6Eyy4Lu4MtWwa/+Q2MGwft2ycdmaRc ZU+tVAE/t8oUP1ubNm8e9OoFY8ZAvXoweDCcfXbSUUlKUO701EZu6yJJqoTJk+H44+Hzz2GrreC5 56Br16SjkpQGGe+pjePYkWPj73//e+IxpGHkKvvClK9Gj4YuXUJB27Fj2P42lwpa5166mb/8Z0+t JClRcQyDBkH37rBgAZxwQuif3X77pCOTlCYZ76mVJJWzp3ZtK1fCxRfDgw+G4xtugP79ochTLpLK 5U5PrSRJ61q8GE45JWyo0KABDB0aLhCTpOpwndoCZO7SzfwpH8yZA4ceGgra5s3h9ddzv6B17qWb +ct/nqmVJGXVlClw9NHhdvvtYdQo2HXXpKOSlHb21EpSFhV6T+2ECWFHsDlzYO+94eWXYZttko5K Uo6rVE+trfiSpKx48UXo1i0UtEceCcXFFrSSao89tQXI3KWb+VMaDR0Kv/gFLFkCffqEArdp06Sj qhrnXrqZv/znmVpJUkbddx/07g2lpWHJriFDwva3klSb7KmVpCwqpJ7aOIZbbgmFLMC998JllyUb k6RUcp1aSVIy4hiuvBLuvjtspPDww3DWWUlHJSmf2VNbgMxdupk/5bqSEujbNxS09erBU0/lR0Hr 3Es385f/PFMrSao1K1bA6afD8OHQsCE891xYk1aSMs2eWknKonzuqV26FE46CV56Kaxs8NJLcNBB SUclKQ/YUytJyo6lS+HEE+GVV6Bly7BL2L77Jh2VpEJiT20BMnfpZv6Ua5YuhRNOCAXtllvCG2/k Z0Hr3Es385f/PFMrSaq2soJ21KjygnavvZKOSlIhsqdWkrIon3pqly4Nu4SNHm1BKymjKtVT645i kqQqW7Og3Wor+PvfLWglJcue2gJk7tLN/ClpS5ZAjx7lBe0bb8CeeyYdVeY599LN/OU/z9RKkipt 2bLQQ/vqq7D11uEMbSEUtJJynz21kpRFae6pXbECevaE558vbznYY4+ko5JUAOyplSTVjpIS6N07 FLRbbAFjxljQSsot9tQWIHOXbuZP2RbHcP758OST0KRJWL6rY8eko8o+5166mb/855laSdIGxTH8 z//Aww9Dw4Zh69suXZKOSpLWZ0+tJGVR2npqb7gBBgyAevVgxAg46qikI5JUgOyplSRV3+23h4K2 Th0YPtyCVlJus6e2AJm7dDN/yobBg+HaayGK4NFHwzJehc65l27mL/95plaStJZnnoELLwz3Bw+G 005LNh5Jqgx7aiUpi3K9p/b11+Hoo8OatLfcAv36JR2RJFWup9aiVpKyKJeL2okToVs3WLQILrkE Bg0K7QeSlLDMXihmb0p6mbt0M3/KhC++CGdoFy2CU06Be++1oF2Xcy/dzF/+s6dWkgrcN9/AEUfA nDnh9tFHocj/HSSljO0HkpRFudZ+MH8+HHwwfPQR/OQnoae2SZOko5KktbhOrSRpw5YuhR49QkG7 yy7w8ssWtJLSy57aAmTu0s38qTaUlsLpp8Obb0Lr1jB6NGy5ZdJR5TbnXrqZv/znmVpJKkBXXQXP Pgubbw6vvALbb590RJJUM/bUSlIW5UJP7X33hSW76taFUaPg5z9PNBxJ2hTXqZWkXJN0UfvCC2HL 2ziGoUPhjDMSC0WSKst1alUxc5du5k/V9c47YQ3aOIabb7agrSrnXrqZv/xnT60kFYAvv4TjjoMl S+Dss+H665OOSJJql+0HkpRFSbQffPstHHBA2DXsyCPhxRehXr2shiBJNeE6tZJU6JYuhV/8IhS0 nTrBM89Y0ErKT/bUFiBzl27mT5UVx3DWWfCPf0CbNmFzhaZNk44qvZx76Wb+8p9naiUpT918Mwwb FnYJe/ll2HbbpCOSpMyxp1aSsihbPbXDhsGpp0JREYwYAccck/E/UpIyxZ5aSSpEb70FffqE+/fc Y0ErqTDYU1uAzF26mT9tzL//HS4MW7YMzj8/7Bym2uHcSzfzl/88UytJeWLBAjj2WJgzB444Av7w B4gq9Us7SUo/e2olKYsy1VO7cmVoM3j1Vdh999CC0KxZrf8xkpQEe2olqVBcemkoaLfaCl56yYJW UuGxp7YAmbt0M39a1wMPhNGgAbzwArRvn3RE+cm5l27mL/95plaSUuyNN8ovBvvTn+CnP002HklK ij21kpRFtdlTO2UK/OQnMG8eXHMN3HZbrbytJOWaSvXUWtRKUhbVVlG7YEE4K/vpp3DccfD882Gj BUnKQ5m9UMzelPQyd+lm/lRSAqecEgraPfeEJ56woM0G5166mb/857dBSUqZq6+GV16Bli3DFrhN myYdkSQlz/YDScqimrYfPPpo2AK3bl147TU4+ODai02ScpTr1EpSPnnrLejbN9x/4AELWklakz21 BcjcpZv5K0zTpsGJJ8Ly5XDxxXDuuUlHVHice+lm/vKfZ2olKcctWQInnACzZsGhh8I99yQdkSTl HntqJSmLqtpTG8dw+ulhhYP27eHdd8MFYpJUQOyplaS0u/vuUNButlnYAteCVpIqZk9tATJ36Wb+ CseoUWH5LoC//AX22ivZeAqdcy/dzF/+80ytJOWgzz+Hk0+G0lK48cZwkZgkacPsqZWkLKpMT+33 30OXLvDZZ/CLX8Bf/+qOYZIKmj21kpQ2paXw61+HgnaPPULbgQWtJG2aPbUFyNylm/nLbzfeCC+9 BM2bhwvD3AI3dzj30s385T9//pekHPHcczBgQDgzO3w47Lhj0hFJUnrYUytJWbShntpJk0If7eLF MHAgXHFFAsFJUm6qVE+tRa0kZVFFRe28efCTn8CUKXDqqfD44xBV6lu4JBWEzF4oZm9Kepm7dDN/ +aWkJBSyU6ZAp07w8MMWtLnKuZdu5i//2VMrSQm64YawycKWW8Lzz0PjxklHJEnpZPuBJGXRmu0H Tz8NvXpBnTowZgwcckjCwUlSbnKdWknKVR99BH36hPt3321BK0k1ZU9tATJ36Wb+0m/uXDjhBPjh BzjjDLjkkqQjUmU499LN/OU/z9RKUiWMGjWKXXfdlZ122ok77rhjva8XFxfTrFkzOnfuTOfOnRkw YMAG3+uUU+Crr2CffeDBB70wTJJqgz21krQJJSUl7LLLLrz22mu0bt2a/fbbj2HDhrHbbrutfk5x cTH33HMPI0aM2Oh7RVEExGy1FUycCG3bZjh4SUo/e2olqTZMmDCBDh060K5dO+rVq8fJJ5/MCy+8 sN7zNnWSYPjwcFu3LjzzjAWtJNUme2oLkLlLN/OXfTNmzKDtGhVomzZtmDFjxlrPiaKIt956i44d O9K9e3c++eSTtb7+0Udw1lnh/j33wMEHZzxs1TLnXrqZv/xXt7ov/OCDDwDo1q0bUP5h8dhjjz3O t+NJkybxzTffUObTTz9dq6gtLi7mhx9+YNq0aTRu3Jg77riDI488kmnTpgEwYkQxffvCDz+E9/vn P3vTuze0a9du9Z+RS39fjys+LpMr8XhcteMyuRKPx5U/PuSQQ7rFcRy+sBH21ErSJowfP57+/fsz atQoAG677TaKioq4+uqrN/ia9u3bM3HiRJo1a0H37vDqq+HCsIkT198mV5K0UfbUSlJt2Hffffni iy+YOnUqy5cvZ/jw4Rx//PFrPWfWrFmri9UJEyYQxzEtWrSgX79Q0G61Ffztb0lEL0mFodpF7bqn 85Ue5i7dzF/21a1bl/vvv58jjzyS3XffnV69erHbbrvx0EMP8dBDDwHw7LPPstdee9GpUycuu+wy nnrqKZ5+Gu680wvD8oVzL93MX/6rdk+tJBWSo48+mqOPPnqtx/r27bv6/oUXXsiFF164+vjDD8t3 DPPCMEnKPHtqJamWffcd7Lcf/PvfYcewRx8t32AhiuyplaQqqlRPrUWtJNWilSvh6KPhtddg333h //4PGjYs/7pFrSRVWWYvFLM3Jb3MXbqZv9x27bWhoN16a3juubULWqWbcy/dzF/+c/UDSaolTz4J AweGC8OefdYLwyQpm2w/kKRa8P77cMABsHQp/O//wgUXVPw82w8kqcrsqZWkbJgzJ/TPfv01nH02 PPxw+YVh67KolaQqs6dWFTN36Wb+csuKFdCrVyho998/nKXdUEGrdHPupZv5y3/21EpSDVx5Jfz9 77DNNvDXv0KDBklHJEmFyfYDSaqmRx6Bs86CevWguDj01G6K7QeSVGWZbT+QpEI2fjz85jfh/uDB lStoJUmZY09tATJ36Wb+kjdzJpx4IixfDhddFC4OU/5z7qWb+ct/nqmVpCpYuhROOAG++Qa6dYN7 7kk6IkkS2FMrSZUWx9CnDwwdCttvD//8J2y5ZdXew55aSaoye2olqTb9/vehoG3cGF54oeoFrSQp c+ypLUDmLt3MXzJeew2uuCLcf/RR6Ngx0XCUAOdeupm//OeZWknahC+/hJ49obQUrrsOTjop6Ygk Seuyp1aSNmLBAvjpT+HTT+HYY0PbQVENTgfYUytJVWZPrSTVREkJnHpqKGj32AOeeKJmBa0kKXPs qS1A5i7dzF/2XHMNjBwJLVvCiBGw+eZJR6QkOffSzfzlP885SFIFhg6FgQOhbl149lnYYYekI5Ik bYw9tZK0jrfegkMOCTuGPfgg9O1be+9tT60kVVmlemotaiVpDV9/DfvtB7Nnhy1w77uvdt/folaS qiyzF4rZm5Je5i7dzF/mLF4MPXqEgvaww+Dee5OOSLnEuZdu5i//2VMrSYQ1aM88Ez74ADp0gOHD Qz+tJClTdr1sAAAUfklEQVQdbD+QJOD66+GWW6BZMxg/HnbdNTN/ju0HklRl9tRKUmX85S/hLG2d OvDyy3DkkZn7syxqJanK7KlVxcxdupm/2vXmm3DOOeH+ffdltqBVujn30s385T97aiUVrClT4IQT YMUKuPRSOP/8pCOSJFWX7QeSCtK8ebD//vD553DMMfDCC6H9INNsP5CkKsts+4EkpdWKFfCrX4WC 9sc/hmHDslPQSpIyx57aAmTu0s381UwchzaDN96AVq3gxRehadOko1IaOPfSzfzlP8/USiooAwfC kCHQqFEoaLfbLumIJEm1wZ5aSQXjmWegZ8/y+7/6VfZjsKdWkqrMnlpJKjNuHJx+erh/++3JFLSS pMyxp7YAmbt0M39VN3ky9OgBy5aFftqrrko6IqWRcy/dzF/+80ytpLw2axYcfTTMnQvHHgt/+ANE lfpFliQpTeyplZS3Fi+GQw6Bd9+FffeF4mLYbLNkY7KnVpKqzJ5aSYWrpAROPTUUtO3awUsvJV/Q SpIyx57aAmTu0s38bVocwyWXwIgR0Lw5vPJKWJNWqgnnXrqZv/znmVpJeeeuu+CBB6B+/bD97a67 Jh2RJCnT7KmVlFeGDoXevcP9p56CXr0SDWc99tRKUpXZUyupsLz0Epx9drg/aFDuFbSSpMyxp7YA mbt0M38Ve+utsFtYSQn06weXXpp0RMo3zr10M3/5zzO1klLv44/hmGNgyRI45xwYMCDpiCRJ2WZP raRU+89/4IADYOZM+MUv4JlnoG7dpKPaMHtqJanKKtVTa1ErKbW+/Ra6dg3b4B54IIweDY0aJR3V xlnUSlKVZfZCMXtT0svcpZv5CxYtCi0HkyfDj38c1qTN9YJW6ebcSzfzl//sqZWUOkuXQo8eMGFC 2C1s1CjYYouko5IkJcn2A0mpsnw5nHgivPwybLMNvPkm7LRT0lFVnu0HklRlrlMrKb+UlMBpp4WC tkULGDMmXQWtJClz7KktQOYu3Qo1f6WlYbmuZ56BzTeHV1+FPfdMOioVkkKde/nC/OU/z9RKynlx DJdcAo8+Co0bhzO1++yTdFSSpFxiT62knBbHcO21cMcdUL9+KGgPOyzpqKrPnlpJqjJ7aiWl3623 hoK2bl149tl0F7SSpMyxp7YAmbt0K6T83XEHXH89RBE8/jgcd1zSEamQFdLcy0fmL/95plZSTrr9 drjmmlDQ/vnP0KtX0hFJknKZPbWScs5tt0G/fuUFbe/eSUdUe+yplaQqs6dWUvrcemt5QfvII/lV 0EqSMsee2gJk7tItn/N3yy1w3XXlBe2ZZyYdkVQun+deITB/+c8ztZJywoAB5ReFPfqoBa0kqWrs qZWUuAED4IYbQkE7dCicfnrSEWWOPbWSVGWV6qmtm+koJGlD1txYoagoFLSnnZZ0VJKkNLKntgCZ u3TLl/yVlsIFF5RvrPDEExa0ym35MvcKlfnLf56plZR1K1aEVQ2efBIaNgw7hR1zTNJRSZLSzJ5a SVm1dCn07AkvvghNmoTbbt2Sjip77KmVpCqzp1ZSblm4EHr0gL//HVq0gFdegZ/8JOmoJEn5wJ7a AmTu0i2t+Zs7Fw4/PBS022wDY8da0Cpd0jr3FJi//OeZWkkZ9/XX0L07TJoE7drBa6/BjjsmHZUk KZ/YUyspoz78MBS0M2fC7rvD6NHQpk3SUSXHnlpJqrJK9dS6o5ikjHntNTjwwFDQHnwwjBtX2AWt JClz7KktQOYu3dKSv8ceg6OPDheH9eoVztA2b550VFL1pWXuqWLmL/95plZSrYpjuO02OOMMWLkS rrgirEfboEHSkUmS8pk9tZJqzcqVcPHF8OCDEEVw771w6aVJR5Vb7KmVpCpznVpJ2TN/Ppx8cmgz aNAgbHv7y18mHZUkqVDYU1uAzF265WL+vvgC9t8/FLQtW4YLxCxolW9yce6p8sxf/rOnVlKNjBkT NlGYPBn23BPefRe6dk06KklSobGnVlK1xDHcfz9cfjmUlITtbx97DJo2TTqy3GZPrSRVmevUSsqM 5cuhb1+45JJQ0PbrB889Z0ErSUqOPbUFyNylW9L5mzULDj8cHn4YGjYMF4TdcgsU+SOy8lzSc081 Y/7yn6sfSKq0ceOgZ0/45hvYdlt4/nnYb7+ko5IkyZ5aSZUQx3DPPXD11aHd4MADYfhw+NGPko4s feyplaQqs6dWUs0tWBCW5/rtb0NBe+WV8MYbFrSSpNxiT20BMnfpls38ffgh7LMP/O1v0KxZuL3z Tqhr45IKkN8708385T/P1EpaTxzDn/8cNlT48kvo1AkmToRf/CLpyCRJqpg9tZLWMm8e/OY38PTT 4fjss+G++6BRo2Tjyhf21EpSlVWqp9ZfIkparbgYTj8dpk+HJk3C5gpnnpl0VJIkbZo9tQXI3KVb JvK3fDlccw0cemgoaLt0gQ8+sKCV1uT3znQzf/nPM7VSgZs8GU49Fd57L2ygcMMNcP31UK9e0pFJ klR59tRKBaq0FB56CK64ApYsgXbt4PHH4Wc/Szqy/GZPrSRVmT21kio2ZQqccw6MHRuOTz89XAzW rFmycUmSVF321BYgc5duNclfSUnYGezHPw4F7dZbh1UO/vIXC1ppU/zemW7mL/95plYqEJ98Amed Be+8E45POw0GDYKWLZONS5Kk2mBPrZTnVqwIu4DdfHNY5aB1a3jwQTj22KQjK0z21EpSldlTKxW6 4mK48MJwlhbg3HPhrrtsNZAk5R97aguQuUu3yuRv5kz49a/hkENCQbvjjjBmDPzxjxa0UnX5vTPd zF/+q3ZRKyn3rFgRLgTbZRd48klo2DC0HXz8MRx2WNLRSZKUOfbUSnli7NjQajBpUjju0QPuvRfa t082Lq3NnlpJqrJK9dR6plZKuc8/hxNPhG7dQkG7ww7w0kvw/PMWtJKkwmFPbQEyd+lWlr/Zs+Gi i2CPPeBvf4NGjaB//1DYHnNMoiFKecnvnelm/vKfqx9IKbN0KdxyC9xxByxcCEVFcPbZoXd2222T jk6SpGTYUyulxMqVYeev3/0OZswIj3XvHorbPfdMNjZVnj21klRlrlMr5YOVK+Hxx2HAAPjyy/BY 584wcCAcemiysUmSlCvsqS1A5i4dVq6EoUNh112hT59Q0O60E/TrV8w//2lBK2Wb3zvTzfzlP1c/ kHJMWZvBbrtB796hmO3QITz2ySdw+OGhj1aSJJWzp1bKEYsXwyOPhLVlv/oqPNahA9xwA5x6KtS1 WSgv2FMrSVVmT62UBrNmwf33wwMPwNy54bEOHeD668NWtxazkiRtmj21Bcjc5YbJk6FvX9h++3AR 2Ny50KULPPssfPYZnHlmxQWt+ZOS4dxLN/OX/zwHJGVRSQmMGhXOyr7yCpT9Fvr44+HKK+FnP4Oo Ur9kkSRJa7KnVsqCOXNgyBB48EH4z3/CYw0awOmnwxVXhBUOVBjsqZWkKrOnVkpSHMNbb8HgwfDM M7B8eXi8fXs4//ywTNeWWyYboyRJ+cKe2gJk7jJrxgy4/fawJFfXrvDEE7BiBRx3HIwcCVOmhFaD 6ha05k9KhnMv3cxf/vNMrVQLliyB55+HRx+FMWPKe2VbtYKzzoLzzoN27ZKMUJKk/GZPrVRNK1dC cTEMHw5PPw3ffx8er18fevQIGycccYRLcmlt9tRKUpXZUyvVtpISePPNUMT+9a/hArAy++0XCtmT T4YWLRILUZKkgmRPbQEyd1VTdkb2oougdWs49NCwisGcObDTTmGThEmTYMIEuOCCzBe05k9KhnMv 3cxf/vNMrVSBBQtg9GgYMSJc3DVvXvnXdtwRevaEXr3gxz92XVlJknKBPbXSKl9+GQrYESNg7Niw YkGZXXcNfbI9e0Lnzhayqj57aiWpyuyplTZm/nx44w149dUw/v3v8q8VFcFBB4Wdvo47DnbeObk4 JUnSptlTW4AKNXdLloTe2P794YADoGVL+OUv4aGHQkHbvDmcdBI89hjMnh3O1l5xRe4VtIWaPylp zr10M3/5zzO1yluLF4cdvcaODWPChPJdvSAstdW1a1h264gjYO+9oU6d5OKVJEnVZ0+t8kIcw9df w/jxYbz9NkycGFYuKBNF0LFjaCs47DDo1g2aNk0sZBUoe2olqcrsqVX+WrAA3n8/nH0tK2L/+9+1 n1NUBPvuCwcfHEbXrqHFQJIk5Z9qF7XFxcV069atFkNRtqQtd3PnwnvvhTFxYridMmX95zVvDvvv Dz/9abjt0gU23zz78WZa2vIn5QvnXrqZv/znmVrljOXL4bPP4F//WntMm7b+c+vXD2vE7rtveSG7 004utSVJUqGyp1ZZt3gxTJ4cCtjPPoNPPw1j8uS1e2DLNGoUemH32SdczLX33rDHHlCvXvZjl2rK nlpJqjJ7apWcpUvhq69Cm8CXX4bbL74IhevXX1f8miiCDh1gr73WHh06uCqBJEnaOHtqC1Bt5G7l SpgxA6ZOXXv8+9+hmJ0+PaxIUJF69UKrwG67hZ26ysZuu8Fmm9UorILg3JOS4dxLN/OX/zxTq/Ws WAGzZsHMmaGfdfr0cLvm/ZkzoaRkw+9Rpw60axfOsq45dtkF2rcPa8RKkiTVFntqC0RpKcybF4rV 2bPXvv3mmzBmzgy3c+Zs+CzrmrbdNhSu64727WH77e15lSpiT60kVZk9tfmqpATmzw9LXa05vvsO vv127TFnTvn9ii7CqkhREbRqBT/6EbRtG0abNuW3bdpA69bQsGFm/56SJEmVZU9tlq1YAYsWwcKF YXz/fdhI4Pvvy8eCBWHMn7/2WLAgnG1dsKB6f3azZqFYbdCgmJ137karVuF4m23CWdcf/SjcbrWV 7QG5zLmXjFGjRnHZZZdRUlLCOeecw9VXX73ecy655BJeeeUVGjduzKOPPkrnzp0TiFSZ4txLN/OX /6pdunzwwQd59+EoLQ1X7S9ZEsaa98vGDz9UPBYvLh+LFq19vHBheSG7bFnN44wi2GILaNEijObN y+9vtRVsuWXFo+zM6qBBH3DZZd1qHogSkY9zL9eVlJRw0UUX8dprr9G6dWv2228/jj/+eHbbbbfV zxk5ciRTpkzhiy++4J133uH8889n/PjxCUat2ubcSzfzl15RFHWL47h4U8+rdlE7f/78jX69tDT8 untDY8WK9e+vWLHxsXz5+sfrjmXL1r6/7ih7fOnS9ceKFdX916i8oiJo2jSMzTeveDRtGorWDY1m zWq2xNWmcqfcZv6yb8KECXTo0IF27doBcPLJJ/PCCy+sVdSOGDGCM888E4AuXbowf/58Zs2aRatW rZIIWRng3Es385dq3YDiTT2p2kXtwIHwv/8b+jtLSkJRuub9tGrYMCz236jR2vcbNYLGjcNY837Z cZMmYTmqsrHmcVkR26RJeE93vZLSZcaMGbRt23b1cZs2bXjnnXc2+Zzp06db1EpSllS7qF28eCqL F2/460VF4Wxi3brlo06dcEV82fGa98uONzbq11//fv360KBBuF13NGiw4dGwYfkoO65fvzAKzqlT pyYdgmrA/GVfVMlvDOuualDZ1ykdnHvpZv7yX7WX9IqiyDVpJEmSlHFxHG/yLEFN1qmVpIIQRVFd YDLwc2AmMAE4JY7jT9d4TnfgojiOu0dRtD8wKI7j/RMJWJIKkAs3SdImxHG8Moqii4DRQB1gSBzH n0ZR1HfV1x+K43hkFEXdoyiaAiwG+iQYsiQVHM/USpIkKfWKavLiKIoujqLo0yiKPo6i6I7aCkrZ E0XRFVEUlUZR1CLpWFR5URTdtWrufRhF0XNRFDVLOiZtXBRFR0VR9FkURV9EUbT+zg3KWVEUtY2i 6O9RFE1a9f/dJUnHpKqJoqhOFEXvR1H0YtKxqGqiKNoiiqJnV/2f98mq9q4KVbuojaLoEOB44Mdx HO8JDKzueykZURS1BQ4H/pN0LKqyV4E94jjuCHwOXJtwPNqIKIrqAPcDRwG7A6dEUbTbxl+lHLIC uDyO4z2A/YELzV/qXAp8Avjr6fT5PTAyjuPdgB8Dn27oiTU5U3s+cFscxysA4jieU4P3UjLuAa5K OghVXRzHY+I4Ll11+A7QJsl4tEk/AabEcTx11ffMp4AeCcekSorj+L9xHH+w6v4iwn+q2yYblSor iqI2QHfgT4Dr7KXIqt9CHhjH8Z8hXN8Qx/GCDT2/JkXtTsBBURSNj6KoOIqifWvwXsqyKIp6ANPj OP4o6VhUY2cBI5MOQhvVGpi2xvH0VY8pZaIoagd0JvwwqXS4F7gSKN3UE5Vz2gNzoih6JIqi96Io ejiKosYbevJGVz+IomgMsE0FX7pu1Wubx3G8fxRF+wFPAzvUIHDVsk3k71rgiDWfnpWgVGkbyV+/ OI5fXPWc64DlcRw/mdXgVFX+yjMPRFHUBHgWuHTVGVvluCiKjgVmx3H8fhRF3ZKOR1VWF9ibsFzi u1EUDQKuAX63oSdvUBzHh2/oa1EUnQ88t+p576662KhlHMffVTt01aoN5S+Koj0JP/18uGrHozbA xCiKfhLH8ewshqiN2Nj8A4iiqDfhV2o/z0pAqokZQNs1jtsSztYqJaIoqgf8FXg8juPnk45HlXYA cPyqdaQbAptHUfSXOI7PSDguVc50wm+V3111/CyhqK1QTdoPngcOBYiiaGegvgVtOsRx/HEcx63i OG4fx3F7wodmbwva9Iii6CjCr9N6xHG8NOl4tEn/BHaKoqhdFEX1gV7AiIRjUiVF4af/IcAncRwP SjoeVV4cx/3iOG676v+6k4E3LGjTI47j/wLTVtWZAIcBkzb0/JpsvvBn4M9RFP0LWA74IUkvfzWa PvcB9YExq862vx3H8QXJhqQN2dDmDQmHpcr7GXAa8FEURe+veuzaOI5HJRiTqsf/79LnYuCJVScE vmQjG9u4+YIkSZJSr0abL0iSJEm5wKJWkiRJqWdRK0mSpNSzqJUkSVLqWdRKkiQp9SxqJUmSlHoW tZIkSUo9i1pJkiSl3v8H7tR/QglpVT0AAAAASUVORK5CYII= )

sigmoid 函数与 tanh 函数的关系

sigmoid 函数与 tanh 之间有如下的转化关系: s(x)=\frac{1}{1+e^{-x}}=\frac{1+\tanh(x/2)}{2}

In [5]:

s2 = (1 + T.tanh(x / 2)) / 2

sigmoid2 = theano.function([x], s2)

sigmoid2([[ 0, 1],
          [-1,-2]])

Out[5]:

array([[ 0.5       ,  0.7310586 ],
       [ 0.26894143,  0.11920291]], dtype=float32)

logistic 回归

简单的二元逻辑回归问题可以这样描述:我们要对数据点 x = (x_1, ..., x_n) 进行 0-1 分类,参数为 $w = (w_1, ..., w_n), b$,我们的假设函数如下:

\begin{align} h_{w,b}(x) & = P(Y=1|X=x) \\ & = sigmoid(z) \\ & =\frac{1}{1 + e^{-z}}\\ \end{align}

其中

\begin{align} z & = x_1w_1 + ... + x_nw_n + b\\ & = w^T x + b\\ \end{align}

对于一个数据点 (x, y), y\in \{0,1\} 来说,我们的目标是希望 h_{w,b}(x) 的值尽量接近于 $y$。

由于数值在 0-1 之间,我们用交叉熵来衡量 h_{w,b}(x)y 的差异:

- y \log(h_{w,b}(x)) - (1-y) \log(1-h_{w,b}(x))

对于一组数据,我们定义损失函数为所有差异的均值,然后通过梯度下降法来优化损失函数,得到最优的参数 $w, b$。

实例

生成随机数据:

In [6]:

rng = np.random

# 数据大小和规模
N = 400
feats = 784

# D = (X, Y)
D = (rng.randn(N, feats), rng.randint(size=N, low=0, high=2))

定义 theano 变量:

In [7]:

x = T.matrix('x')
y = T.vector('y')

# 要更新的变量:
w = theano.shared(rng.randn(feats), name='w')
b = theano.shared(0., name='b')

定义模型:

In [8]:

h = 1 / (1 + T.exp(-T.dot(x, w) - b))

h > 0.5 时,认为该类的标签为 1

In [9]:

prediction = h > 0.5

损失函数和梯度:

In [10]:

cost = - T.mean(y * T.log(h) + (1 - y) * T.log(1 - h)) + 0.01 * T.sum(w ** 2)  # 正则项,防止过拟合
gw, gb = T.grad(cost, [w, b])

编译训练和预测函数:

In [11]:

train = theano.function(inputs=[x, y],
                        outputs=cost,
                        updates=[[w, w - 0.1 * gw], [b, b - 0.1 * gb]], 
                        allow_input_downcast=True)

predict = theano.function(inputs=[x],
                          outputs=prediction,
                          allow_input_downcast=True)

In [12]:

for i in xrange(10001):
    err = train(D[0], D[1])
    if i % 1000 == 0:
        print 'iter %5d, error %f' % (i, err)

iter     0, error 19.295896
iter  1000, error 0.210341
iter  2000, error 0.126124
iter  3000, error 0.124872
iter  4000, error 0.124846
iter  5000, error 0.124845
iter  6000, error 0.124845
iter  7000, error 0.124845
iter  8000, error 0.124845
iter  9000, error 0.124845
iter 10000, error 0.124845

查看结果:

In [13]:

print D[1]

[0 0 0 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1 0 0 1 1 0 0 0 0 1 0
 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 0 0 0 0 0 1 0 0
 0 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 1 0 1 0
 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1
 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 1
 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 0 0 0 1 0 0 0 1 0
 1 0 1 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1
 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1
 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0
 0 1 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 0 1 0 0 1
 0 1 0 1 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0 0 1 1 0]

In [14]:

print predict(D[0])

[0 0 0 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1 0 0 1 1 0 0 0 0 1 0
 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 0 0 0 0 0 1 0 0
 0 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 1 0 1 0
 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1
 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 1
 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 0 0 0 1 0 0 0 1 0
 1 0 1 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1
 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1
 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0
 0 1 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 0 1 0 0 1
 0 1 0 1 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0 0 1 1 0]