mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-11 14:26:04 +08:00
472 lines
18 KiB
Python
472 lines
18 KiB
Python
"""
|
|
Created on Nov 4, 2010
|
|
Update on 2017-03-21
|
|
Chapter 5 source file for Machine Learing in Action
|
|
@author: Peter/geekidentity
|
|
"""
|
|
from numpy import *
|
|
from time import sleep
|
|
|
|
def loadDataSet(fileName):
|
|
"""
|
|
对文件进行逐行解析,从而得到第行的类标签和整个数据矩阵
|
|
Args:
|
|
fileName: testSet.txt
|
|
|
|
Returns:
|
|
数据矩阵, 类标签
|
|
"""
|
|
dataMat = []; labelMat = []
|
|
fr = open(fileName)
|
|
for line in fr.readlines():
|
|
lineArr = line.strip().split('\t')
|
|
dataMat.append([float(lineArr[0]), float(lineArr[1])])
|
|
labelMat.append(float(lineArr[2]))
|
|
return dataMat,labelMat
|
|
|
|
def selectJrand(i,m):
|
|
"""
|
|
随机选择一个整数
|
|
Args:
|
|
i: 第一个alpha的下标
|
|
m: 所有alpha的数目
|
|
|
|
Returns:
|
|
|
|
"""
|
|
j=i #we want to select any J not equal to i
|
|
while (j==i):
|
|
j = int(random.uniform(0,m))
|
|
return j
|
|
|
|
def clipAlpha(aj,H,L):
|
|
"""
|
|
用于调整大于H或小于L的alpha值
|
|
Args:
|
|
aj:
|
|
H:
|
|
L:
|
|
|
|
Returns:
|
|
|
|
"""
|
|
if aj > H:
|
|
aj = H
|
|
if L > aj:
|
|
aj = L
|
|
return aj
|
|
|
|
def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
|
|
"""
|
|
SVM SMO算法的简单实现:
|
|
创建一个alpha向量并将其初始化为0向量
|
|
当迭代次数据小于最大迭代次数时(外循环)
|
|
对数据集中的每个数据向量(内循环):
|
|
如果该数据向量可以被优化:
|
|
随机选择另外一个数据向量
|
|
同时优化这两个向量
|
|
如果两个向量都不能被优化,退出内循环
|
|
如果所有向量都没有被优化,增加迭代数目,继续下一次循环
|
|
Args:
|
|
dataMatIn: 数据集
|
|
classLabels: 类别标签
|
|
C: 常数C
|
|
toler: 容错率
|
|
maxIter: 退出前最大的循环次数
|
|
|
|
Returns:
|
|
|
|
"""
|
|
dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose()
|
|
b = 0; m,n = shape(dataMatrix)
|
|
alphas = mat(zeros((m,1)))
|
|
iter = 0
|
|
while (iter < maxIter):
|
|
alphaPairsChanged = 0
|
|
for i in range(m):
|
|
fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b
|
|
Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions
|
|
if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):
|
|
j = selectJrand(i,m)
|
|
fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b
|
|
Ej = fXj - float(labelMat[j])
|
|
alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy()
|
|
if (labelMat[i] != labelMat[j]):
|
|
L = max(0, alphas[j] - alphas[i])
|
|
H = min(C, C + alphas[j] - alphas[i])
|
|
else:
|
|
L = max(0, alphas[j] + alphas[i] - C)
|
|
H = min(C, alphas[j] + alphas[i])
|
|
if L==H: print("L==H"); continue
|
|
eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T
|
|
if eta >= 0: print("eta>=0"); continue
|
|
alphas[j] -= labelMat[j]*(Ei - Ej)/eta
|
|
alphas[j] = clipAlpha(alphas[j],H,L)
|
|
if (abs(alphas[j] - alphaJold) < 0.00001): print("j not moving enough"); continue
|
|
alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])#update i by the same amount as j
|
|
#the update is in the oppostie direction
|
|
b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
|
|
b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
|
|
if (0 < alphas[i]) and (C > alphas[i]): b = b1
|
|
elif (0 < alphas[j]) and (C > alphas[j]): b = b2
|
|
else: b = (b1 + b2)/2.0
|
|
alphaPairsChanged += 1
|
|
print("iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
|
|
if (alphaPairsChanged == 0): iter += 1
|
|
else: iter = 0
|
|
print("iteration number: %d" % iter)
|
|
return b,alphas
|
|
|
|
|
|
def kernelTrans(X, A, kTup): # calc the kernel or transform data to a higher dimensional space
|
|
m, n = shape(X)
|
|
K = mat(zeros((m, 1)))
|
|
if kTup[0] == 'lin':
|
|
K = X * A.T # linear kernel
|
|
elif kTup[0] == 'rbf':
|
|
for j in range(m):
|
|
deltaRow = X[j, :] - A
|
|
K[j] = deltaRow * deltaRow.T
|
|
K = exp(K / (-1 * kTup[1] ** 2)) # divide in NumPy is element-wise not matrix like Matlab
|
|
else:
|
|
raise NameError('Houston We Have a Problem -- \
|
|
That Kernel is not recognized')
|
|
return K
|
|
|
|
|
|
class optStruct:
|
|
def __init__(self, dataMatIn, classLabels, C, toler, kTup): # Initialize the structure with the parameters
|
|
self.X = dataMatIn
|
|
self.labelMat = classLabels
|
|
self.C = C
|
|
self.tol = toler
|
|
self.m = shape(dataMatIn)[0]
|
|
self.alphas = mat(zeros((self.m, 1)))
|
|
self.b = 0
|
|
self.eCache = mat(zeros((self.m, 2))) # first column is valid flag
|
|
self.K = mat(zeros((self.m, self.m)))
|
|
for i in range(self.m):
|
|
self.K[:, i] = kernelTrans(self.X, self.X[i, :], kTup)
|
|
|
|
|
|
def calcEk(oS, k):
|
|
fXk = float(multiply(oS.alphas, oS.labelMat).T * oS.K[:, k] + oS.b)
|
|
Ek = fXk - float(oS.labelMat[k])
|
|
return Ek
|
|
|
|
|
|
def selectJ(i, oS, Ei): # this is the second choice -heurstic, and calcs Ej
|
|
maxK = -1
|
|
maxDeltaE = 0
|
|
Ej = 0
|
|
oS.eCache[i] = [1, Ei] # set valid #choose the alpha that gives the maximum delta E
|
|
validEcacheList = nonzero(oS.eCache[:, 0].A)[0]
|
|
if (len(validEcacheList)) > 1:
|
|
for k in validEcacheList: # loop through valid Ecache values and find the one that maximizes delta E
|
|
if k == i: continue # don't calc for i, waste of time
|
|
Ek = calcEk(oS, k)
|
|
deltaE = abs(Ei - Ek)
|
|
if (deltaE > maxDeltaE):
|
|
maxK = k;
|
|
maxDeltaE = deltaE;
|
|
Ej = Ek
|
|
return maxK, Ej
|
|
else: # in this case (first time around) we don't have any valid eCache values
|
|
j = selectJrand(i, oS.m)
|
|
Ej = calcEk(oS, j)
|
|
return j, Ej
|
|
|
|
|
|
def updateEk(oS, k): # after any alpha has changed update the new value in the cache
|
|
Ek = calcEk(oS, k)
|
|
oS.eCache[k] = [1, Ek]
|
|
|
|
|
|
def innerL(i, oS):
|
|
Ei = calcEk(oS, i)
|
|
if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or (
|
|
(oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
|
|
j, Ej = selectJ(i, oS, Ei) # this has been changed from selectJrand
|
|
alphaIold = oS.alphas[i].copy();
|
|
alphaJold = oS.alphas[j].copy();
|
|
if (oS.labelMat[i] != oS.labelMat[j]):
|
|
L = max(0, oS.alphas[j] - oS.alphas[i])
|
|
H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
|
|
else:
|
|
L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
|
|
H = min(oS.C, oS.alphas[j] + oS.alphas[i])
|
|
if L == H: print
|
|
"L==H";
|
|
return 0
|
|
eta = 2.0 * oS.K[i, j] - oS.K[i, i] - oS.K[j, j] # changed for kernel
|
|
if eta >= 0: print
|
|
"eta>=0";
|
|
return 0
|
|
oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej) / eta
|
|
oS.alphas[j] = clipAlpha(oS.alphas[j], H, L)
|
|
updateEk(oS, j) # added this for the Ecache
|
|
if (abs(oS.alphas[j] - alphaJold) < 0.00001): print
|
|
"j not moving enough";
|
|
return 0
|
|
oS.alphas[i] += oS.labelMat[j] * oS.labelMat[i] * (alphaJold - oS.alphas[j]) # update i by the same amount as j
|
|
updateEk(oS, i) # added this for the Ecache #the update is in the oppostie direction
|
|
b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.K[i, i] - oS.labelMat[j] * (
|
|
oS.alphas[j] - alphaJold) * oS.K[i, j]
|
|
b2 = oS.b - Ej - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.K[i, j] - oS.labelMat[j] * (
|
|
oS.alphas[j] - alphaJold) * oS.K[j, j]
|
|
if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]):
|
|
oS.b = b1
|
|
elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]):
|
|
oS.b = b2
|
|
else:
|
|
oS.b = (b1 + b2) / 2.0
|
|
return 1
|
|
else:
|
|
return 0
|
|
|
|
|
|
def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup=('lin', 0)): # full Platt SMO
|
|
oS = optStruct(mat(dataMatIn), mat(classLabels).transpose(), C, toler, kTup)
|
|
iter = 0
|
|
entireSet = True;
|
|
alphaPairsChanged = 0
|
|
while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
|
|
alphaPairsChanged = 0
|
|
if entireSet: # go over all
|
|
for i in range(oS.m):
|
|
alphaPairsChanged += innerL(i, oS)
|
|
print
|
|
"fullSet, iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged)
|
|
iter += 1
|
|
else: # go over non-bound (railed) alphas
|
|
nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
|
|
for i in nonBoundIs:
|
|
alphaPairsChanged += innerL(i, oS)
|
|
print
|
|
"non-bound, iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged)
|
|
iter += 1
|
|
if entireSet:
|
|
entireSet = False # toggle entire set loop
|
|
elif (alphaPairsChanged == 0):
|
|
entireSet = True
|
|
print
|
|
"iteration number: %d" % iter
|
|
return oS.b, oS.alphas
|
|
|
|
|
|
def calcWs(alphas, dataArr, classLabels):
|
|
X = mat(dataArr);
|
|
labelMat = mat(classLabels).transpose()
|
|
m, n = shape(X)
|
|
w = zeros((n, 1))
|
|
for i in range(m):
|
|
w += multiply(alphas[i] * labelMat[i], X[i, :].T)
|
|
return w
|
|
|
|
|
|
def testRbf(k1=1.3):
|
|
dataArr, labelArr = loadDataSet('testSetRBF.txt')
|
|
b, alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) # C=200 important
|
|
datMat = mat(dataArr);
|
|
labelMat = mat(labelArr).transpose()
|
|
svInd = nonzero(alphas.A > 0)[0]
|
|
sVs = datMat[svInd] # get matrix of only support vectors
|
|
labelSV = labelMat[svInd];
|
|
print
|
|
"there are %d Support Vectors" % shape(sVs)[0]
|
|
m, n = shape(datMat)
|
|
errorCount = 0
|
|
for i in range(m):
|
|
kernelEval = kernelTrans(sVs, datMat[i, :], ('rbf', k1))
|
|
predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
|
|
if sign(predict) != sign(labelArr[i]): errorCount += 1
|
|
print
|
|
"the training error rate is: %f" % (float(errorCount) / m)
|
|
dataArr, labelArr = loadDataSet('testSetRBF2.txt')
|
|
errorCount = 0
|
|
datMat = mat(dataArr);
|
|
labelMat = mat(labelArr).transpose()
|
|
m, n = shape(datMat)
|
|
for i in range(m):
|
|
kernelEval = kernelTrans(sVs, datMat[i, :], ('rbf', k1))
|
|
predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
|
|
if sign(predict) != sign(labelArr[i]): errorCount += 1
|
|
print
|
|
"the test error rate is: %f" % (float(errorCount) / m)
|
|
|
|
|
|
def img2vector(filename):
|
|
returnVect = zeros((1, 1024))
|
|
fr = open(filename)
|
|
for i in range(32):
|
|
lineStr = fr.readline()
|
|
for j in range(32):
|
|
returnVect[0, 32 * i + j] = int(lineStr[j])
|
|
return returnVect
|
|
|
|
|
|
def loadImages(dirName):
|
|
from os import listdir
|
|
hwLabels = []
|
|
trainingFileList = listdir(dirName) # load the training set
|
|
m = len(trainingFileList)
|
|
trainingMat = zeros((m, 1024))
|
|
for i in range(m):
|
|
fileNameStr = trainingFileList[i]
|
|
fileStr = fileNameStr.split('.')[0] # take off .txt
|
|
classNumStr = int(fileStr.split('_')[0])
|
|
if classNumStr == 9:
|
|
hwLabels.append(-1)
|
|
else:
|
|
hwLabels.append(1)
|
|
trainingMat[i, :] = img2vector('%s/%s' % (dirName, fileNameStr))
|
|
return trainingMat, hwLabels
|
|
|
|
|
|
def testDigits(kTup=('rbf', 10)):
|
|
dataArr, labelArr = loadImages('trainingDigits')
|
|
b, alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
|
|
datMat = mat(dataArr);
|
|
labelMat = mat(labelArr).transpose()
|
|
svInd = nonzero(alphas.A > 0)[0]
|
|
sVs = datMat[svInd]
|
|
labelSV = labelMat[svInd];
|
|
print("there are %d Support Vectors" % shape(sVs)[0])
|
|
m, n = shape(datMat)
|
|
errorCount = 0
|
|
for i in range(m):
|
|
kernelEval = kernelTrans(sVs, datMat[i, :], kTup)
|
|
predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
|
|
if sign(predict) != sign(labelArr[i]): errorCount += 1
|
|
print
|
|
"the training error rate is: %f" % (float(errorCount) / m)
|
|
dataArr, labelArr = loadImages('testDigits')
|
|
errorCount = 0
|
|
datMat = mat(dataArr);
|
|
labelMat = mat(labelArr).transpose()
|
|
m, n = shape(datMat)
|
|
for i in range(m):
|
|
kernelEval = kernelTrans(sVs, datMat[i, :], kTup)
|
|
predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
|
|
if sign(predict) != sign(labelArr[i]): errorCount += 1
|
|
print
|
|
"the test error rate is: %f" % (float(errorCount) / m)
|
|
|
|
|
|
'''#######********************************
|
|
Non-Kernel VErsions below
|
|
''' #######********************************
|
|
|
|
|
|
class optStructK:
|
|
def __init__(self, dataMatIn, classLabels, C, toler): # Initialize the structure with the parameters
|
|
self.X = dataMatIn
|
|
self.labelMat = classLabels
|
|
self.C = C
|
|
self.tol = toler
|
|
self.m = shape(dataMatIn)[0]
|
|
self.alphas = mat(zeros((self.m, 1)))
|
|
self.b = 0
|
|
self.eCache = mat(zeros((self.m, 2))) # first column is valid flag
|
|
|
|
|
|
def calcEkK(oS, k):
|
|
fXk = float(multiply(oS.alphas, oS.labelMat).T * (oS.X * oS.X[k, :].T)) + oS.b
|
|
Ek = fXk - float(oS.labelMat[k])
|
|
return Ek
|
|
|
|
|
|
def selectJK(i, oS, Ei): # this is the second choice -heurstic, and calcs Ej
|
|
maxK = -1
|
|
maxDeltaE = 0
|
|
Ej = 0
|
|
oS.eCache[i] = [1, Ei] # set valid #choose the alpha that gives the maximum delta E
|
|
validEcacheList = nonzero(oS.eCache[:, 0].A)[0]
|
|
if (len(validEcacheList)) > 1:
|
|
for k in validEcacheList: # loop through valid Ecache values and find the one that maximizes delta E
|
|
if k == i: continue # don't calc for i, waste of time
|
|
Ek = calcEk(oS, k)
|
|
deltaE = abs(Ei - Ek)
|
|
if (deltaE > maxDeltaE):
|
|
maxK = k;
|
|
maxDeltaE = deltaE;
|
|
Ej = Ek
|
|
return maxK, Ej
|
|
else: # in this case (first time around) we don't have any valid eCache values
|
|
j = selectJrand(i, oS.m)
|
|
Ej = calcEk(oS, j)
|
|
return j, Ej
|
|
|
|
|
|
def updateEkK(oS, k): # after any alpha has changed update the new value in the cache
|
|
Ek = calcEk(oS, k)
|
|
oS.eCache[k] = [1, Ek]
|
|
|
|
|
|
def innerLK(i, oS):
|
|
Ei = calcEk(oS, i)
|
|
if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or (
|
|
(oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
|
|
j, Ej = selectJ(i, oS, Ei) # this has been changed from selectJrand
|
|
alphaIold = oS.alphas[i].copy();
|
|
alphaJold = oS.alphas[j].copy();
|
|
if (oS.labelMat[i] != oS.labelMat[j]):
|
|
L = max(0, oS.alphas[j] - oS.alphas[i])
|
|
H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
|
|
else:
|
|
L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
|
|
H = min(oS.C, oS.alphas[j] + oS.alphas[i])
|
|
if L == H: print
|
|
"L==H";
|
|
return 0
|
|
eta = 2.0 * oS.X[i, :] * oS.X[j, :].T - oS.X[i, :] * oS.X[i, :].T - oS.X[j, :] * oS.X[j, :].T
|
|
if eta >= 0: print
|
|
"eta>=0";
|
|
return 0
|
|
oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej) / eta
|
|
oS.alphas[j] = clipAlpha(oS.alphas[j], H, L)
|
|
updateEk(oS, j) # added this for the Ecache
|
|
if (abs(oS.alphas[j] - alphaJold) < 0.00001): print
|
|
"j not moving enough";
|
|
return 0
|
|
oS.alphas[i] += oS.labelMat[j] * oS.labelMat[i] * (alphaJold - oS.alphas[j]) # update i by the same amount as j
|
|
updateEk(oS, i) # added this for the Ecache #the update is in the oppostie direction
|
|
b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :] * oS.X[i, :].T - oS.labelMat[j] * (
|
|
oS.alphas[j] - alphaJold) * oS.X[i, :] * oS.X[j, :].T
|
|
b2 = oS.b - Ej - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :] * oS.X[j, :].T - oS.labelMat[j] * (
|
|
oS.alphas[j] - alphaJold) * oS.X[j, :] * oS.X[j, :].T
|
|
if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]):
|
|
oS.b = b1
|
|
elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]):
|
|
oS.b = b2
|
|
else:
|
|
oS.b = (b1 + b2) / 2.0
|
|
return 1
|
|
else:
|
|
return 0
|
|
|
|
|
|
def smoPK(dataMatIn, classLabels, C, toler, maxIter): # full Platt SMO
|
|
oS = optStruct(mat(dataMatIn), mat(classLabels).transpose(), C, toler)
|
|
iter = 0
|
|
entireSet = True;
|
|
alphaPairsChanged = 0
|
|
while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
|
|
alphaPairsChanged = 0
|
|
if entireSet: # go over all
|
|
for i in range(oS.m):
|
|
alphaPairsChanged += innerL(i, oS)
|
|
print("fullSet, iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged))
|
|
iter += 1
|
|
else: # go over non-bound (railed) alphas
|
|
nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
|
|
for i in nonBoundIs:
|
|
alphaPairsChanged += innerL(i, oS)
|
|
print("non-bound, iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged))
|
|
iter += 1
|
|
if entireSet:
|
|
entireSet = False # toggle entire set loop
|
|
elif (alphaPairsChanged == 0):
|
|
entireSet = True
|
|
print("iteration number: %d" % iter)
|
|
return oS.b, oS.alphas |