mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-12 06:46:14 +08:00
305 lines
12 KiB
Python
305 lines
12 KiB
Python
#!/usr/bin/python
|
||
# coding:utf8
|
||
|
||
'''
|
||
Created on Nov 28, 2010
|
||
Adaboost is short for Adaptive Boosting
|
||
@author: Peter/jiangzhonglian
|
||
'''
|
||
from numpy import *
|
||
|
||
|
||
def loadSimpData():
|
||
""" 测试数据
|
||
Returns:
|
||
dataArr feature对应的数据集
|
||
labelArr feature对应的分类标签
|
||
"""
|
||
dataArr = array([[1., 2.1], [2., 1.1], [1.3, 1.], [1., 1.], [2., 1.]])
|
||
labelArr = [1.0, 1.0, -1.0, -1.0, 1.0]
|
||
return dataArr, labelArr
|
||
|
||
|
||
# general function to parse tab -delimited floats
|
||
def loadDataSet(fileName):
|
||
# get number of fields
|
||
numFeat = len(open(fileName).readline().split('\t'))
|
||
dataArr = []
|
||
labelArr = []
|
||
fr = open(fileName)
|
||
for line in fr.readlines():
|
||
lineArr = []
|
||
curLine = line.strip().split('\t')
|
||
for i in range(numFeat-1):
|
||
lineArr.append(float(curLine[i]))
|
||
dataArr.append(lineArr)
|
||
labelArr.append(float(curLine[-1]))
|
||
return dataArr, labelArr
|
||
|
||
|
||
def stumpClassify(dataMat, dimen, threshVal, threshIneq):
|
||
"""stumpClassify(将数据集,按照feature列的value进行 二分法切分比较来赋值分类)
|
||
|
||
Args:
|
||
dataMat Matrix数据集
|
||
dimen 特征列
|
||
threshVal 特征列要比较的值
|
||
Returns:
|
||
retArray 结果集
|
||
"""
|
||
# 默认都是1
|
||
retArray = ones((shape(dataMat)[0], 1))
|
||
# dataMat[:, dimen] 表示数据集中第dimen列的所有值
|
||
# threshIneq == 'lt'表示修改左边的值,gt表示修改右边的值
|
||
# print '-----', threshIneq, dataMat[:, dimen], threshVal
|
||
if threshIneq == 'lt':
|
||
retArray[dataMat[:, dimen] <= threshVal] = -1.0
|
||
else:
|
||
retArray[dataMat[:, dimen] > threshVal] = -1.0
|
||
return retArray
|
||
|
||
|
||
def buildStump(dataArr, labelArr, D):
|
||
"""buildStump(得到决策树的模型)
|
||
|
||
Args:
|
||
dataArr 特征标签集合
|
||
labelArr 分类标签集合
|
||
D 最初的特征权重值
|
||
Returns:
|
||
bestStump 最优的分类器模型
|
||
minError 错误率
|
||
bestClasEst 训练后的结果集
|
||
"""
|
||
# 转换数据
|
||
dataMat = mat(dataArr)
|
||
labelMat = mat(labelArr).T
|
||
# m行 n列
|
||
m, n = shape(dataMat)
|
||
|
||
# 初始化数据
|
||
numSteps = 10.0
|
||
bestStump = {}
|
||
bestClasEst = mat(zeros((m, 1)))
|
||
# 初始化的最小误差为无穷大
|
||
minError = inf
|
||
|
||
# 循环所有的feature列,将列切分成 若干份,每一段以最左边的点作为分类节点
|
||
for i in range(n):
|
||
rangeMin = dataMat[:, i].min()
|
||
rangeMax = dataMat[:, i].max()
|
||
# print 'rangeMin=%s, rangeMax=%s' % (rangeMin, rangeMax)
|
||
# 计算每一份的元素个数
|
||
stepSize = (rangeMax-rangeMin)/numSteps
|
||
# 例如: 4=(10-1)/2 那么 1-4(-1次) 1(0次) 1+1*4(1次) 1+2*4(2次)
|
||
# 所以: 循环 -1/0/1/2
|
||
for j in range(-1, int(numSteps)+1):
|
||
# go over less than and greater than
|
||
for inequal in ['lt', 'gt']:
|
||
# 如果是-1,那么得到rangeMin-stepSize; 如果是numSteps,那么得到rangeMax
|
||
threshVal = (rangeMin + float(j) * stepSize)
|
||
# 对单层决策树进行简单分类,得到预测的分类值
|
||
predictedVals = stumpClassify(dataMat, i, threshVal, inequal)
|
||
# print predictedVals
|
||
errArr = mat(ones((m, 1)))
|
||
# 正确为0,错误为1
|
||
errArr[predictedVals == labelMat] = 0
|
||
# 计算 平均每个特征的概率0.2*错误概率的总和为多少,就知道错误率多高
|
||
# 例如: 一个都没错,那么错误率= 0.2*0=0 , 5个都错,那么错误率= 0.2*5=1, 只错3个,那么错误率= 0.2*3=0.6
|
||
weightedError = D.T*errArr
|
||
'''
|
||
dim 表示 feature列
|
||
threshVal 表示树的分界值
|
||
inequal 表示计算树左右颠倒的错误率的情况
|
||
weightedError 表示整体结果的错误率
|
||
bestClasEst 预测的最优结果
|
||
'''
|
||
# print "split: dim %d, thresh %.2f, thresh ineqal: %s, the weighted error is %.3f" % (i, threshVal, inequal, weightedError)
|
||
if weightedError < minError:
|
||
minError = weightedError
|
||
bestClasEst = predictedVals.copy()
|
||
bestStump['dim'] = i
|
||
bestStump['thresh'] = threshVal
|
||
bestStump['ineq'] = inequal
|
||
|
||
# bestStump 表示分类器的结果,在第几个列上,用大于/小于比较,阈值是多少
|
||
return bestStump, minError, bestClasEst
|
||
|
||
|
||
def adaBoostTrainDS(dataArr, labelArr, numIt=40):
|
||
"""adaBoostTrainDS(adaBoost训练过程放大)
|
||
|
||
Args:
|
||
dataArr 特征标签集合
|
||
labelArr 分类标签集合
|
||
numIt 实例数
|
||
Returns:
|
||
weakClassArr 弱分类器的集合
|
||
aggClassEst 预测的分类结果值
|
||
"""
|
||
weakClassArr = []
|
||
m = shape(dataArr)[0]
|
||
# 初始化 D,设置每个特征的权重值,平均分为m份
|
||
D = mat(ones((m, 1))/m)
|
||
aggClassEst = mat(zeros((m, 1)))
|
||
for i in range(numIt):
|
||
# 得到决策树的模型
|
||
bestStump, error, classEst = buildStump(dataArr, labelArr, D)
|
||
|
||
# alpha目的主要是计算每一个分类器实例的权重(组合就是分类结果)
|
||
# 计算每个分类器的alpha权重值
|
||
alpha = float(0.5*log((1.0-error)/max(error, 1e-16)))
|
||
bestStump['alpha'] = alpha
|
||
# store Stump Params in Array
|
||
weakClassArr.append(bestStump)
|
||
|
||
# print "alpha=%s, classEst=%s, bestStump=%s, error=%s " % (alpha, classEst.T, bestStump, error)
|
||
# -1主要是下面求e的-alpha次方; 如果判断正确,乘积为1,否则成绩为-1,这样就可以算出分类的情况了
|
||
expon = multiply(-1*alpha*mat(labelArr).T, classEst)
|
||
print '\n'
|
||
print 'labelArr=', labelArr
|
||
print 'classEst=', classEst.T
|
||
print '\n'
|
||
print '乘积: ', multiply(mat(labelArr).T, classEst).T
|
||
# 判断正确的,就乘以-1,否则就乘以1, 为什么? 书上的公式。
|
||
print '(-1取反)预测值expon=', expon.T
|
||
# 计算e的expon次方,然后计算得到一个综合的概率的值
|
||
# 结果发现: 判断错误的特征,D对于的特征的权重值会变大。
|
||
D = multiply(D, exp(expon))
|
||
D = D/D.sum()
|
||
print "D: ", D.T
|
||
print '\n'
|
||
|
||
# 预测的分类结果值,在上一轮结果的基础上,进行加和操作
|
||
print '当前的分类结果:', alpha*classEst.T
|
||
aggClassEst += alpha*classEst
|
||
print "叠加后的分类结果aggClassEst: ", aggClassEst.T
|
||
# sign 判断正为1, 0为0, 负为-1,通过最终加和的权重值,判断符号。
|
||
# 结果为:错误的样本标签集合,因为是 !=,那么结果就是0 正, 1 负
|
||
aggErrors = multiply(sign(aggClassEst) != mat(labelArr).T, ones((m, 1)))
|
||
errorRate = aggErrors.sum()/m
|
||
# print "total error=%s " % (errorRate)
|
||
if errorRate == 0.0:
|
||
break
|
||
return weakClassArr, aggClassEst
|
||
|
||
|
||
def adaClassify(datToClass, classifierArr):
|
||
# do stuff similar to last aggClassEst in adaBoostTrainDS
|
||
dataMat = mat(datToClass)
|
||
m = shape(dataMat)[0]
|
||
aggClassEst = mat(zeros((m, 1)))
|
||
|
||
# 循环 多个分类器
|
||
for i in range(len(classifierArr)):
|
||
# 前提: 我们已经知道了最佳的分类器的实例
|
||
# 通过分类器来核算每一次的分类结果,然后通过alpha*每一次的结果 得到最后的权重加和的值。
|
||
classEst = stumpClassify(dataMat, classifierArr[i]['dim'], classifierArr[i]['thresh'], classifierArr[i]['ineq'])
|
||
aggClassEst += classifierArr[i]['alpha']*classEst
|
||
# print aggClassEst
|
||
return sign(aggClassEst)
|
||
|
||
|
||
def plotROC(predStrengths, classLabels):
|
||
"""plotROC(打印ROC曲线,并计算AUC的面积大小)
|
||
|
||
Args:
|
||
predStrengths 最终预测结果的权重值
|
||
classLabels 原始数据的分类结果集
|
||
"""
|
||
import matplotlib.pyplot as plt
|
||
# variable to calculate AUC
|
||
ySum = 0.0
|
||
# 对正样本的进行求和
|
||
numPosClas = sum(array(classLabels)==1.0)
|
||
# 正样本的概率
|
||
yStep = 1/float(numPosClas)
|
||
# 负样本的概率
|
||
xStep = 1/float(len(classLabels)-numPosClas)
|
||
# argsort函数返回的是数组值从小到大的索引值
|
||
# get sorted index, it's reverse
|
||
sortedIndicies = predStrengths.argsort()
|
||
|
||
# 开始创建模版对象
|
||
fig = plt.figure()
|
||
fig.clf()
|
||
ax = plt.subplot(111)
|
||
# cursor光标值
|
||
cur = (1.0, 1.0)
|
||
# loop through all the values, drawing a line segment at each point
|
||
for index in sortedIndicies.tolist()[0]:
|
||
if classLabels[index] == 1.0:
|
||
delX = 0
|
||
delY = yStep
|
||
else:
|
||
delX = xStep
|
||
delY = 0
|
||
ySum += cur[1]
|
||
# draw line from cur to (cur[0]-delX, cur[1]-delY)
|
||
# 画点连线 (x1, x2, y1, y2)
|
||
# print cur[0], cur[0]-delX, cur[1], cur[1]-delY
|
||
ax.plot([cur[0], cur[0]-delX], [cur[1], cur[1]-delY], c='b')
|
||
cur = (cur[0]-delX, cur[1]-delY)
|
||
# 画对角的虚线线
|
||
ax.plot([0, 1], [0, 1], 'b--')
|
||
plt.xlabel('False positive rate')
|
||
plt.ylabel('True positive rate')
|
||
plt.title('ROC curve for AdaBoost horse colic detection system')
|
||
# 设置画图的范围区间 (x1, x2, y1, y2)
|
||
ax.axis([0, 1, 0, 1])
|
||
plt.show()
|
||
'''
|
||
参考说明:http://blog.csdn.net/wenyusuran/article/details/39056013
|
||
为了计算AUC,我们需要对多个小矩形的面积进行累加。这些小矩形的宽度是xStep,因此
|
||
可以先对所有矩形的高度进行累加,最后再乘以xStep得到其总面积。所有高度的和(ySum)随
|
||
着x轴的每次移动而渐次增加。
|
||
'''
|
||
print "the Area Under the Curve is: ", ySum*xStep
|
||
|
||
|
||
if __name__ == "__main__":
|
||
# 我们要将5个点进行分类
|
||
dataArr, labelArr = loadSimpData()
|
||
print 'dataArr', dataArr, 'labelArr', labelArr
|
||
|
||
# D表示最初值,对1进行均分为5份,平均每一个初始的概率都为0.2
|
||
# D的目的是为了计算错误概率: weightedError = D.T*errArr
|
||
D = mat(ones((5, 1))/5)
|
||
print 'D=', D.T
|
||
|
||
bestStump, minError, bestClasEst = buildStump(dataArr, labelArr, D)
|
||
print 'bestStump=', bestStump
|
||
print 'minError=', minError
|
||
print 'bestClasEst=', bestClasEst.T
|
||
|
||
|
||
# 分类器:weakClassArr
|
||
# 历史累计的分类结果集
|
||
weakClassArr, aggClassEst = adaBoostTrainDS(dataArr, labelArr, 9)
|
||
print '\nweakClassArr=', weakClassArr, '\naggClassEst=', aggClassEst.T
|
||
|
||
"""
|
||
发现:
|
||
分类的权重值:最大的值,为alpha的加和,最小值为-最大值
|
||
特征的权重值:如果一个值误判的几率越小,那么D的特征权重越少
|
||
"""
|
||
|
||
# 测试数据的分类结果, 观测:aggClassEst分类的最终权重
|
||
print adaClassify([0, 0], weakClassArr).T
|
||
print adaClassify([[5, 5], [0, 0]], weakClassArr).T
|
||
|
||
# 马疝病数据集
|
||
# 训练集合
|
||
# dataArr, labelArr = loadDataSet("testData/AB_horseColicTraining2.txt")
|
||
# weakClassArr, aggClassEst = adaBoostTrainDS(dataArr, labelArr, 40)
|
||
# print weakClassArr, '\n-----\n', aggClassEst.T
|
||
# 计算ROC下面的AUC的面积大小
|
||
# plotROC(aggClassEst.T, labelArr)
|
||
# 测试集合
|
||
# dataArrTest, labelArrTest = loadDataSet("testData/AB_horseColicTest2.txt")
|
||
# m = shape(dataArrTest)[0]
|
||
# predicting10 = adaClassify(dataArrTest, weakClassArr)
|
||
# errArr = mat(ones((m, 1)))
|
||
# # 测试:计算总样本数,错误样本数,错误率
|
||
# print m, errArr[predicting10 != mat(labelArrTest).T].sum(), errArr[predicting10 != mat(labelArrTest).T].sum()/m
|