mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-13 15:26:28 +08:00
216 lines
8.1 KiB
Python
216 lines
8.1 KiB
Python
#!/usr/bin/python
|
||
# coding:utf8
|
||
|
||
'''
|
||
Created on 2015-06-22
|
||
Update on 2017-05-16
|
||
@author: Lockvictor/片刻
|
||
《推荐系统实践》协同过滤算法源代码
|
||
参考地址:https://github.com/Lockvictor/MovieLens-RecSys
|
||
更新地址:https://github.com/apachecn/MachineLearning
|
||
'''
|
||
import sys
|
||
import math
|
||
import random
|
||
from operator import itemgetter
|
||
print(__doc__)
|
||
# 作用:使得随机数据可预测
|
||
random.seed(0)
|
||
|
||
|
||
class ItemBasedCF():
|
||
''' TopN recommendation - ItemBasedCF '''
|
||
def __init__(self):
|
||
self.trainset = {}
|
||
self.testset = {}
|
||
|
||
# n_sim_user: top 20个用户, n_rec_movie: top 10个推荐结果
|
||
self.n_sim_movie = 20
|
||
self.n_rec_movie = 10
|
||
|
||
# user_sim_mat: 电影之间的相似度, movie_popular: 电影的出现次数, movie_count: 总电影数量
|
||
self.movie_sim_mat = {}
|
||
self.movie_popular = {}
|
||
self.movie_count = 0
|
||
|
||
print >> sys.stderr, 'Similar movie number = %d' % self.n_sim_movie
|
||
print >> sys.stderr, 'Recommended movie number = %d' % self.n_rec_movie
|
||
|
||
@staticmethod
|
||
def loadfile(filename):
|
||
"""loadfile(加载文件,返回一个生成器)
|
||
|
||
Args:
|
||
filename 文件名
|
||
Returns:
|
||
line 行数据,去空格
|
||
"""
|
||
fp = open(filename, 'r')
|
||
for i, line in enumerate(fp):
|
||
yield line.strip('\r\n')
|
||
if i > 0 and i % 100000 == 0:
|
||
print >> sys.stderr, 'loading %s(%s)' % (filename, i)
|
||
fp.close()
|
||
print >> sys.stderr, 'load %s success' % filename
|
||
|
||
def generate_dataset(self, filename, pivot=0.7):
|
||
"""loadfile(加载文件,将数据集按照7:3 进行随机拆分)
|
||
|
||
Args:
|
||
filename 文件名
|
||
pivot 拆分比例
|
||
"""
|
||
trainset_len = 0
|
||
testset_len = 0
|
||
|
||
for line in self.loadfile(filename):
|
||
# 用户ID,电影名称,评分,时间戳
|
||
user, movie, rating, _ = line.split('::')
|
||
# 通过pivot和随机函数比较,然后初始化用户和对应的值
|
||
if (random.random() < pivot):
|
||
|
||
# dict.setdefault(key, default=None)
|
||
# key -- 查找的键值
|
||
# default -- 键不存在时,设置的默认键值
|
||
self.trainset.setdefault(user, {})
|
||
self.trainset[user][movie] = int(rating)
|
||
trainset_len += 1
|
||
else:
|
||
self.testset.setdefault(user, {})
|
||
self.testset[user][movie] = int(rating)
|
||
testset_len += 1
|
||
|
||
print >> sys.stderr, '分离训练集和测试集成功'
|
||
print >> sys.stderr, 'train set = %s' % trainset_len
|
||
print >> sys.stderr, 'test set = %s' % testset_len
|
||
|
||
def calc_movie_sim(self):
|
||
"""calc_movie_sim(计算用户之间的相似度)"""
|
||
|
||
print >> sys.stderr, 'counting movies number and popularity...'
|
||
|
||
# 统计在所有的用户中,不同电影的总出现次数
|
||
for user, movies in self.trainset.iteritems():
|
||
for movie in movies:
|
||
# count item popularity
|
||
if movie not in self.movie_popular:
|
||
self.movie_popular[movie] = 0
|
||
self.movie_popular[movie] += 1
|
||
|
||
print >> sys.stderr, 'count movies number and popularity success'
|
||
|
||
# save the total number of movies
|
||
self.movie_count = len(self.movie_popular)
|
||
print >> sys.stderr, 'total movie number = %d' % self.movie_count
|
||
|
||
# 统计在相同用户时,不同电影同时出现的次数
|
||
itemsim_mat = self.movie_sim_mat
|
||
print >> sys.stderr, 'building co-rated users matrix...'
|
||
|
||
for user, movies in self.trainset.iteritems():
|
||
for m1 in movies:
|
||
for m2 in movies:
|
||
if m1 == m2:
|
||
continue
|
||
itemsim_mat.setdefault(m1, {})
|
||
itemsim_mat[m1].setdefault(m2, 0)
|
||
itemsim_mat[m1][m2] += 1
|
||
print >> sys.stderr, 'build co-rated users matrix success'
|
||
|
||
# calculate similarity matrix
|
||
print >> sys.stderr, 'calculating movie similarity matrix...'
|
||
simfactor_count = 0
|
||
PRINT_STEP = 2000000
|
||
for m1, related_movies in itemsim_mat.iteritems():
|
||
for m2, count in related_movies.iteritems():
|
||
# 余弦相似度
|
||
itemsim_mat[m1][m2] = count / math.sqrt(self.movie_popular[m1] * self.movie_popular[m2])
|
||
simfactor_count += 1
|
||
# 打印进度条
|
||
if simfactor_count % PRINT_STEP == 0:
|
||
print >> sys.stderr, 'calculating movie similarity factor(%d)' % simfactor_count
|
||
|
||
print >> sys.stderr, 'calculate movie similarity matrix(similarity factor) success'
|
||
print >> sys.stderr, 'Total similarity factor number = %d' % simfactor_count
|
||
|
||
# @profile
|
||
def recommend(self, user):
|
||
"""recommend(找出top K的电影,对电影进行相似度sum的排序,取出top N的电影数)
|
||
|
||
Args:
|
||
user 用户
|
||
Returns:
|
||
rec_movie 电影推荐列表,按照相似度从大到小的排序
|
||
"""
|
||
''' Find K similar movies and recommend N movies. '''
|
||
K = self.n_sim_movie
|
||
N = self.n_rec_movie
|
||
rank = {}
|
||
watched_movies = self.trainset[user]
|
||
|
||
# 计算top K 电影的相似度
|
||
# rating=电影评分, w=不同电影出现的次数
|
||
# 耗时分析:98.2%的时间在 line-154行
|
||
for movie, rating in watched_movies.iteritems():
|
||
for related_movie, w in sorted(self.movie_sim_mat[movie].items(), key=itemgetter(1), reverse=True)[0:K]:
|
||
if related_movie in watched_movies:
|
||
continue
|
||
rank.setdefault(related_movie, 0)
|
||
rank[related_movie] += w * rating
|
||
# return the N best movies
|
||
return sorted(rank.items(), key=itemgetter(1), reverse=True)[0:N]
|
||
|
||
def evaluate(self):
|
||
''' return precision, recall, coverage and popularity '''
|
||
print >> sys.stderr, 'Evaluation start...'
|
||
|
||
# 返回top N的推荐结果
|
||
N = self.n_rec_movie
|
||
# varables for precision and recall
|
||
# hit表示命中(测试集和推荐集相同+1),rec_count 每个用户的推荐数, test_count 每个用户对应的测试数据集的电影数
|
||
hit = 0
|
||
rec_count = 0
|
||
test_count = 0
|
||
# varables for coverage
|
||
all_rec_movies = set()
|
||
# varables for popularity
|
||
popular_sum = 0
|
||
|
||
# enumerate将其组成一个索引序列,利用它可以同时获得索引和值
|
||
# 参考地址:http://blog.csdn.net/churximi/article/details/51648388
|
||
for i, user in enumerate(self.trainset):
|
||
if i > 0 and i % 500 == 0:
|
||
print >> sys.stderr, 'recommended for %d users' % i
|
||
test_movies = self.testset.get(user, {})
|
||
rec_movies = self.recommend(user)
|
||
|
||
# 对比测试集和推荐集的差异
|
||
for movie, w in rec_movies:
|
||
if movie in test_movies:
|
||
hit += 1
|
||
all_rec_movies.add(movie)
|
||
# 计算用户对应的电影出现次数log值的sum加和
|
||
popular_sum += math.log(1 + self.movie_popular[movie])
|
||
rec_count += N
|
||
test_count += len(test_movies)
|
||
|
||
precision = hit / (1.0 * rec_count)
|
||
recall = hit / (1.0 * test_count)
|
||
coverage = len(all_rec_movies) / (1.0 * self.movie_count)
|
||
popularity = popular_sum / (1.0 * rec_count)
|
||
|
||
print >> sys.stderr, 'precision=%.4f \t recall=%.4f \t coverage=%.4f \t popularity=%.4f' % (precision, recall, coverage, popularity)
|
||
|
||
|
||
if __name__ == '__main__':
|
||
ratingfile = 'input/16.RecommenderSystems/ml-1m/ratings.dat'
|
||
|
||
# 创建ItemCF对象
|
||
itemcf = ItemBasedCF()
|
||
# 将数据按照 7:3的比例,拆分成:训练集和测试集,存储在usercf的trainset和testset中
|
||
itemcf.generate_dataset(ratingfile, pivot=0.7)
|
||
# 计算用户之间的相似度
|
||
itemcf.calc_movie_sim()
|
||
# 评估推荐效果
|
||
itemcf.evaluate()
|