mirror of
https://github.com/apachecn/ailearning.git
synced 2026-02-07 04:14:27 +08:00
125 lines
4.3 KiB
Python
125 lines
4.3 KiB
Python
#!/usr/bin/python
|
||
# coding: utf8
|
||
|
||
from math import log
|
||
|
||
|
||
def calcShannonEnt(dataSet):
|
||
"""calcShannonEnt(calculate Shannon entropy 计算label分类标签的香农熵)
|
||
|
||
Args:
|
||
dataSet 数据集
|
||
Returns:
|
||
返回香农熵的计算值
|
||
Raises:
|
||
|
||
"""
|
||
# 求list的长度,表示计算参与训练的数据量
|
||
numEntries = len(dataSet)
|
||
# print(type(dataSet), 'numEntries: ', numEntries)
|
||
|
||
# 计算分类标签label出现的次数
|
||
labelCounts = {}
|
||
# the the number of unique elements and their occurance
|
||
for featVec in dataSet:
|
||
currentLabel = featVec[-1]
|
||
if currentLabel not in labelCounts.keys():
|
||
labelCounts[currentLabel] = 0
|
||
labelCounts[currentLabel] += 1
|
||
# print('-----', featVec, labelCounts)
|
||
|
||
# 对于label标签的占比,求出label标签的香农熵
|
||
shannonEnt = 0.0
|
||
for key in labelCounts:
|
||
prob = float(labelCounts[key])/numEntries
|
||
# log base 2
|
||
shannonEnt -= prob * log(prob, 2)
|
||
# print('---', prob, prob * log(prob, 2), shannonEnt)
|
||
return shannonEnt
|
||
|
||
|
||
def splitDataSet(dataSet, axis, value):
|
||
"""splitDataSet(通过遍历dataSet数据集,求出axis对应的colnum列的值为value的行)
|
||
|
||
Args:
|
||
dataSet 数据集
|
||
axis 表示每一行的axis列
|
||
value 表示axis列对应的value值
|
||
Returns:
|
||
axis列为value的数据集【该数据集需要排除axis列】
|
||
Raises:
|
||
|
||
"""
|
||
retDataSet = []
|
||
for featVec in dataSet:
|
||
# axis列为value的数据集【该数据集需要排除axis列】
|
||
if featVec[axis] == value:
|
||
# chop out axis used for splitting
|
||
reducedFeatVec = featVec[:axis]
|
||
'''
|
||
请百度查询一下: extend和append的区别
|
||
'''
|
||
reducedFeatVec.extend(featVec[axis+1:])
|
||
# 收集结果值 axis列为value的行【该行需要排除axis列】
|
||
retDataSet.append(reducedFeatVec)
|
||
return retDataSet
|
||
|
||
|
||
def getFeatureShannonEnt(dataSet, labels):
|
||
"""chooseBestFeatureToSplit(选择最好的特征)
|
||
|
||
Args:
|
||
dataSet 数据集
|
||
Returns:
|
||
bestFeature 最优的特征列
|
||
Raises:
|
||
|
||
"""
|
||
# 求第一行有多少列的 Feature
|
||
numFeatures = len(dataSet[0]) - 1
|
||
# label的信息熵
|
||
baseEntropy = calcShannonEnt(dataSet)
|
||
# 最优的信息增益值, 和最优的Featurn编号
|
||
bestInfoGain, bestFeature, endEntropy = 0.0, -1, 0.0
|
||
# iterate over all the features
|
||
for i in range(numFeatures):
|
||
# create a list of all the examples of this feature
|
||
# 获取每一个feature的list集合
|
||
featList = [example[i] for example in dataSet]
|
||
# get a set of unique values
|
||
# 获取剔重后的集合
|
||
uniqueVals = set(featList)
|
||
# 创建一个临时的信息熵
|
||
newEntropy = 0.0
|
||
# 遍历某一列的value集合,计算该列的信息熵
|
||
for value in uniqueVals:
|
||
subDataSet = splitDataSet(dataSet, i, value)
|
||
prob = len(subDataSet)/float(len(dataSet))
|
||
newEntropy += prob * calcShannonEnt(subDataSet)
|
||
# gain[信息增益] 值越大,意味着该分类提供的信息量越大,该特征对分类的不确定程度越小
|
||
# gain[信息增益]=0, 表示与类别相同,无需其他的分类
|
||
# gain[信息增益]=baseEntropy, 表示分类和没分类没有区别
|
||
infoGain = baseEntropy - newEntropy
|
||
# print(infoGain)
|
||
if (infoGain > bestInfoGain):
|
||
endEntropy = newEntropy
|
||
bestInfoGain = infoGain
|
||
bestFeature = i
|
||
else:
|
||
if numFeatures < 0:
|
||
labels[bestFeature] = 'null'
|
||
|
||
return labels[bestFeature], baseEntropy, endEntropy, bestInfoGain
|
||
|
||
|
||
if __name__ == '__main__':
|
||
labels = ['no surfacing', 'flippers']
|
||
dataSet1 = [['yes'], ['yes'], ['no'], ['no'], ['no']]
|
||
dataSet2 = [['a', 1, 'yes'], ['a', 2, 'yes'], ['b', 3, 'no'], ['c', 4, 'no'], ['c', 5, 'no']]
|
||
dataSet3 = [[1, 'yes'], [1, 'yes'], [1, 'no'], [3, 'no'], [3, 'no']]
|
||
infoGain1 = getFeatureShannonEnt(dataSet1, labels)
|
||
infoGain2 = getFeatureShannonEnt(dataSet2, labels)
|
||
infoGain3 = getFeatureShannonEnt(dataSet3, labels)
|
||
print('信息增益: \n\t%s, \n\t%s, \n\t%s' % (infoGain1, infoGain2, infoGain3))
|
||
|