Files
ailearning/src/python/7.RandomForest/randomForest.py
2017-04-25 23:23:33 +08:00

223 lines
10 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
#!/usr/bin/python
# coding:utf8
'''
Created 2017-04-25
Random Forest Algorithm on Sonar Dataset
@author: Flying_sfeng/jiangzhonglian
'''
from random import seed, randrange, random
from math import sqrt
from math import log
# 导入csv文件
def loadDataSet(filename):
dataset = []
with open(filename, 'r') as fr:
for line in fr.readlines():
if not line:
continue
lineArr = []
for featrue in line.split(','):
# strip()返回移除字符串头尾指定的字符生成的新字符串
str_f = featrue.strip()
if str_f.isdigit():
# 将数据集的第column列转换成float形式
lineArr.append(float(str_f))
else:
# 添加分类标签
lineArr.append(str_f)
dataset.append(lineArr)
return dataset
# Split a dataset into k folds
def cross_validation_split(dataset, n_folds): #将数据集dataset分成n_flods份每份包含len(dataset) / n_folds个值每个值由dataset数据集的内容随机产生每个值被使用一次
dataset_split = list()
dataset_copy = list(dataset) #复制一份dataset,防止dataset的内容改变
fold_size = len(dataset) / n_folds
for i in range(n_folds):
fold = list() #每次循环fold清零防止重复导入dataset_split
while len(fold) < fold_size: #这里不能用ifif只是在第一次判断时起作用while执行循环直到条件不成立
index = randrange(len(dataset_copy))
fold.append(dataset_copy.pop(index)) #将对应索引index的内容从dataset_copy中导出并将该内容从dataset_copy中删除。pop() 函数用于移除列表中的一个元素(默认最后一个元素),并且返回该元素的值。
dataset_split.append(fold)
return dataset_split #由dataset分割出的n_folds个数据构成的列表为了用于交叉验证
# Calculate accuracy percentage
def accuracy_metric(actual, predicted): #导入实际值和预测值,计算精确度
correct = 0
for i in range(len(actual)):
if actual[i] == predicted[i]:
correct += 1
return correct / float(len(actual)) * 100.0
# Split a dataset based on an attribute and an attribute value #根据特征和特征值分割数据集
def test_split(index, value, dataset):
left, right = list(), list()
for row in dataset:
if row[index] < value:
left.append(row)
else:
right.append(row)
return left, right
# Calculate the Gini index for a split dataset
def gini_index(groups, class_values): #个人理解计算代价分类越准确则gini越小
gini = 0.0
for class_value in class_values: #class_values =[0,1]
for group in groups: #groups=(left,right)
size = len(group)
if size == 0:
continue
proportion = [row[-1] for row in group].count(class_value) / float(size)
gini += (proportion * (1.0 - proportion)) #个人理解计算代价分类越准确则gini越小
return gini
# Select the best split point for a dataset #找出分割数据集的最优特征得到最优的特征index特征值row[index]以及分割完的数据groupsleft,right
def get_split(dataset, n_features):
class_values = list(set(row[-1] for row in dataset)) #class_values =[0,1]
b_index, b_value, b_score, b_groups = 999, 999, 999, None
features = list()
while len(features) < n_features:
index = randrange(len(dataset[0])-1) #往features添加n_features个特征n_feature等于特征数的根号特征索引从dataset中随机取
if index not in features:
features.append(index)
for index in features: #在n_features个特征中选出最优的特征索引并没有遍历所有特征从而保证了每课决策树的差异性
for row in dataset:
groups = test_split(index, row[index], dataset) #groups=(left,right)row[index]遍历每一行index索引下的特征值作为分类值value找出最优的分类特征和特征值
gini = gini_index(groups, class_values)
if gini < b_score:
b_index, b_value, b_score, b_groups = index, row[index], gini, groups #最后得到最优的分类特征b_index,分类特征值b_value,分类结果b_groups。b_value为分错的代价成本。
#print b_score
return {'index':b_index, 'value':b_value, 'groups':b_groups}
# Create a terminal node value #输出group中出现次数较多的标签
def to_terminal(group):
outcomes = [row[-1] for row in group] #max()函数中当key参数不为空时就以key的函数对象为判断的标准;
return max(set(outcomes), key=outcomes.count) # 输出group中出现次数较多的标签
# Create child splits for a node or make terminal #创建子分割器,递归分类,直到分类结束
def split(node, max_depth, min_size, n_features, depth): #max_depth = 10min_size = 1n_features = int(sqrt(len(dataset[0])-1))
left, right = node['groups']
del(node['groups'])
# check for a no split
if not left or not right:
node['left'] = node['right'] = to_terminal(left + right)
return
# check for max depth
if depth >= max_depth: #max_depth=10表示递归十次若分类还未结束则选取数据中分类标签较多的作为结果使分类提前结束防止过拟合
node['left'], node['right'] = to_terminal(left), to_terminal(right)
return
# process left child
if len(left) <= min_size:
node['left'] = to_terminal(left)
else:
node['left'] = get_split(left, n_features) #node['left']是一个字典,形式为{'index':b_index, 'value':b_value, 'groups':b_groups}所以node是一个多层字典
split(node['left'], max_depth, min_size, n_features, depth+1) #递归depth+1计算递归层数
# process right child
if len(right) <= min_size:
node['right'] = to_terminal(right)
else:
node['right'] = get_split(right, n_features)
split(node['right'], max_depth, min_size, n_features, depth+1)
# Build a decision tree
def build_tree(train, max_depth, min_size, n_features):
#root = get_split(dataset, n_features)
root = get_split(train, n_features)
split(root, max_depth, min_size, n_features, 1)
return root
# Make a prediction with a decision tree
def predict(node, row): #预测模型分类结果
if row[node['index']] < node['value']:
if isinstance(node['left'], dict): #isinstance是Python中的一个内建函数。是用来判断一个对象是否是一个已知的类型。
return predict(node['left'], row)
else:
return node['left']
else:
if isinstance(node['right'], dict):
return predict(node['right'], row)
else:
return node['right']
# Make a prediction with a list of bagged trees
def bagging_predict(trees, row):
predictions = [predict(tree, row) for tree in trees] #使用多个决策树trees对测试集test的第row行进行预测再使用简单投票法判断出该行所属分类
return max(set(predictions), key=predictions.count)
# Create a random subsample from the dataset with replacement
def subsample(dataset, ratio): #创建数据集的随机子样本
sample = list()
n_sample = round(len(dataset) * ratio) #round() 方法返回浮点数x的四舍五入值。
while len(sample) < n_sample:
index = randrange(len(dataset)) #有放回的随机采样,有一些样本被重复采样,从而在训练集中多次出现,有的则从未在训练集中出现,此则自助采样法。从而保证每棵决策树训练集的差异性
sample.append(dataset[index])
return sample
# Random Forest Algorithm
def random_forest(train, test, max_depth, min_size, sample_size, n_trees, n_features):
trees = list()
for i in range(n_trees): #n_trees表示决策树的数量
sample = subsample(train, sample_size) #随机采样保证了每棵决策树训练集的差异性
tree = build_tree(sample, max_depth, min_size, n_features) #建立一个决策树
trees.append(tree)
predictions = [bagging_predict(trees, row) for row in test]
return(predictions)
# Evaluate an algorithm using a cross validation split
def evaluate_algorithm(dataset, algorithm, n_folds, *args): #评估算法性能,返回模型得分
folds = cross_validation_split(dataset, n_folds)
scores = list()
for fold in folds: #每次循环从folds从取出一个fold作为测试集其余作为训练集遍历整个folds实现交叉验证
train_set = list(folds)
train_set.remove(fold)
train_set = sum(train_set, []) #将多个fold列表组合成一个train_set列表
test_set = list()
for row in fold: #fold表示从原始数据集dataset提取出来的测试集
row_copy = list(row)
test_set.append(row_copy)
row_copy[-1] = None
predicted = algorithm(train_set, test_set, *args)
actual = [row[-1] for row in fold]
accuracy = accuracy_metric(actual, predicted)
scores.append(accuracy)
return scores
if __name__ == '__main__':
# 加载数据
dataset = loadDataSet('input/7.RandomForest/sonar-all-data.txt')
# print dataset
n_folds = 5 #分成5份数据进行交叉验证
#max_depth = 10 #递归十次
max_depth = 20 #调参(自己修改) #决策树深度不能太深,不然容易导致过拟合
min_size = 1
sample_size = 1.0
#n_features = int(sqrt(len(dataset[0])-1))
n_features =15 #调参(自己修改) #准确性与多样性之间的权衡
for n_trees in [1,5,10]: #理论上树是越多越好
scores = evaluate_algorithm(dataset, random_forest, n_folds, max_depth, min_size, sample_size, n_trees, n_features)
# 每一次执行本文件时都能产生同一个随机数
seed(1)
print 'random=', random()
print('Trees: %d' % n_trees)
print('Scores: %s' % scores)
print('Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores))))