diff --git a/notebooks/unit1/unit1.ipynb b/notebooks/unit1/unit1.ipynb index cc09268..8283dd3 100644 --- a/notebooks/unit1/unit1.ipynb +++ b/notebooks/unit1/unit1.ipynb @@ -338,8 +338,9 @@ "from huggingface_hub import notebook_login # To log to our Hugging Face account to be able to upload models to the Hub.\n", "\n", "from stable_baselines3 import PPO\n", + "from stable_baselines3.common.env_util import make_vec_env\n", "from stable_baselines3.common.evaluation import evaluate_policy\n", - "from stable_baselines3.common.env_util import make_vec_env" + "from stable_baselines3.common.monitor import Monitor" ] }, { @@ -738,6 +739,7 @@ }, "source": [ "## Evaluate the agent 📈\n", + "- Remember to wrap the environment in a [Monitor](https://stable-baselines3.readthedocs.io/en/master/common/monitor.html).\n", "- Now that our Lunar Lander agent is trained 🚀, we need to **check its performance**.\n", "- Stable-Baselines3 provides a method to do that: `evaluate_policy`.\n", "- To fill that part you need to [check the documentation](https://stable-baselines3.readthedocs.io/en/master/guide/examples.html#basic-usage-training-saving-loading)\n", @@ -784,7 +786,7 @@ "outputs": [], "source": [ "#@title\n", - "eval_env = gym.make(\"LunarLander-v2\")\n", + "eval_env = Monitor(gym.make(\"LunarLander-v2\"))\n", "mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)\n", "print(f\"mean_reward={mean_reward:.2f} +/- {std_reward}\")" ] @@ -917,7 +919,7 @@ "env_id = \n", "\n", "# Create the evaluation env and set the render_mode=\"rgb_array\"\n", - "eval_env = DummyVecEnv([lambda: gym.make(env_id, render_mode=\"rgb_array\")])\n", + "eval_env = DummyVecEnv([lambda: Monitor(gym.make(env_id, render_mode=\"rgb_array\"))])\n", "\n", "\n", "# TODO: Define the model architecture we used\n", @@ -1096,7 +1098,7 @@ "cell_type": "code", "source": [ "#@title\n", - "eval_env = gym.make(\"LunarLander-v2\")\n", + "eval_env = Monitor(gym.make(\"LunarLander-v2\"))\n", "mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)\n", "print(f\"mean_reward={mean_reward:.2f} +/- {std_reward}\")" ],